
Part 2 – Emulator Development Guide

1 Introduction...2
2 Processor Sheet...3
3 Assembler...6
4 ALU Acc..8
5 Instruction Set...9
6 Micro code..10
7 Gates...11
8 Concluding Remark..12
APPENDIX:MACROS.. 13
1. EXCEL..15
2. CALC... 29

1

1 Introduction

Part 1 concerns the installation and operation of the emulator. This part is a
guide to the operational details of the emulator to aid its further development.

Each of the sheets and the core cell functionality is described in this part.
Some sheets contain buttons which activate macros and the macros are
included in full with additional notes in the Appendix to this part. Many of the
sheet cells have been allocated names to make the macros impacting their
content easier to understand (and write in the first place).

Not every cell is described in the following. Some cells are copies or
reformatted versions of other cells. These are easily seen by exploring the
spreadsheet.

The spreadsheet cell formulae are largely compatible between Excel and Calc
when importing the spreadsheet of the other type. The original development
occurred on Excel. The formulae may contain subtle formatting differences
and Apache documentation is available which explains the differences. The
only incompatible cell formulae are contained in the Processor sheet at cells
AK14 and 15. The returned values for the CELL function are different between
Excel and Calc since the start row and column number references begin with
one in Excel but zero in Calc. The difference is trivial and did not warrant a
work-around during the development of the Calc version.

However, the macros are not compatible because Excel VBA and OpenOffice
Basic contain core differences. Many functions are very similar but the macros
are largely rewritten since it is not possible to import functional versions of the
other type macros. The macros are the principal reason the spreadsheets can
only function with the corresponding application program.

2

2 Processor Sheet

The cells which are updated by the macros need to be unprotected and hence
are contained in a hidden area columns BA to BH. The register values are
held here along with other modifiable data. All cells outside the hidden
columns are protected and hence each protected register and memory cell is
set by equating each protected cell to the corresponding hidden unprotected
cell.

Control of the processor sheet appearance is summarised as follows:

 The values held by the registers – largely under the control of the
macro “clock”. As each cycle is processed (with the button “clock”) the
macro checks the cycle number and processes the register value
accordingly.

 The content of memory – the visible area is formatted from two invisible
tables (by using the same colour for font and background). The tables
format the memory data into decimal and disassembled views from
hidden content held in the column beginning “Memory_start”. The hex
view is a conversion of the decimal view in the memory cell formulae.
The hidden content may be set to zero (“Clear_Memory” macro) or
copied from the assembled values from the “Assembler” sheet
(“Load_Memory” macro).

 The control of the Gates – the text indicating the status of a Gate is
derived from the instruction and cycle identified in the “Gates” sheet.

 The data flow animation – derived from some conditional cell content
with conditional formatting according to the status of the Gates.

 The memory address decode shading – derived from the row and
column hex numbers given by the hex address explicitly.

 The conditional branch animation – derived from the result of condition
checking on the Processor sheet.

The instruction control properties as defined on the “Instruction Set” sheet for
the current instruction are copied into the hidden area (column BF). The
macro “clock” processing is controlled using the copied properties.

The 256 bytes of Memory data is copied from the Assembler sheet by the
macro “Load_Memory”. The location on Processor is from BA25 (named
“Memory_start”) to BA280. From here it is copied into the invisible table at
AD25:AS40. The table is invisible because the font and background colours
are the same. This technique applies to all results that are not part of the
display.

3

The code is disassembled into column AU until the line number in AW
corresponds to the “LOC_count”. This number is set to the “LOC_sum” on the
Assembler sheet when the macro Load_Memory runs and determines that
only the written program is disassembled. Column AV determines operand
presence by a look-up to the “Instruction Set” sheet.

The disassembled code is rearranged in the invisible table AD42:AS57.

Clear Memory runs the macro “Clear_Memory” which copies the 256 zero-
filled cells in column AC starting at AC25 into the corresponding cells starting
at BA25 (Memory_start) and sets LOC_count to zero. The zeroes in cells
AC25 to AC280 are invisible.

The displayed Memory is determined by the value “DHDSwitch” (BB16). The
value in the cell is set by macros “Select_Hex”, “Select_Dec” and “Select_Dis”
as 1, 0 or 2 respectively. Through each Memory cell formula the appropriate
value is copied from the selected invisible table and converted to hex if
DHDSwitch is 1.

Cell U21 displays the byte on the data line when the data bus is enabled (V15
= “Y”). This is copied from K44 which is a lookup into the row selected from
the displayed memory and copied to K43:Z43. The lookups are through G43
and G44 in turn derived from the content of the Address Bus Register.

J25:J40, K41:Z41, K42:Z42 are used for conditional formatting around
memory. If there is correspondence between any row and column address
with the corresponding hex value of ADDRESS, then the result is one,
otherwise zero. This includes the grey bars and black highlighting of the
selected memory byte and the low hex digit of ADDRESS.

“mem_start_col” and “mem_start_row” (cells AK14 and 15) are used by the
Clock macro to determine the column and row of Memory_start. The two cells
are the only cells containing different formulae between the Excel and Calc
types.

Cell J6 indicates the branch instruction type when Gate H is selected in the
Gates sheet, otherwise the cell is blank. Content here signals a branch
condition.

“BrDecision” (cell J5) decodes an entry in J6 into a value supporting branch
processing. The instruction is identified and the branch condition tested. No
branch instruction or no condition met results in the value zero. A branch
instruction with the condition met results in the value one. Gate H is controlled
by this value.

Cell G7 sets up a value according to the branch type placed in J6. The
conditional formats of the paths from the Zero and Carry flags are set
according to the values stored.

4

Cell J7 is blank until J6 contains content whereupon it indicates if the branch
condition is met and Gate H is to be turned on (ENABLE) or otherwise
(DISABLE). Conditional formatting along path to Gate H is controlled by J7.

5

3 Assembler

Text copied into the input columns of the sheet are processed in the hidden
columns J to AD.

Columns AI to AT are also hidden. AJ, AK and AL contain the text copied by
the macro “Assembler” from the “Source” sheet and so are unprotected and
hidden. The displayed cells are a copy of the hidden version.

Labels are separated into “Constants” and “Variables” by the presence of
“EQ” in the Instruction column.

An Instruction entry is marked as an “opcode?” if the content is not blank,
“EQ” or “&”.

For each marked opcode? an “operand?” is marked if the column Op contains
an entry. Memory markers “&” always include an operand (although there is
no opcode). Otherwise there is no operand? marked.

The number of bytes “no. bytes” for each line entry is the sum of opcode? plus
operand?.

“count” contains a running sum of the number of bytes in the program
including memory bytes. “before” shows the value of “count” for the previous
line i.e. the start position of the current line.

“value” is determined as the value in Op if the label is a “constant” or is
“before” if the label is a “variable”. (“count” contains the number of bytes after
adding the line entries). “value” is where an entry in Label is assigned its
value.

“opcode” searches the “Instruction Set” sheet for the entry in Ins and returns
any found match Machine Code (in decimal). No match returns zero.

“operand” assigns the value to the operand byte. A blank entry assigns zero.
“EQ” in Ins assigns zero (but no byte is generated). An entry preceded with
“#” is treated as a string and the right two characters are selected for a hex to
decimal conversion. Any format problem returns an error condition (#NUM!).
Any other entry is treated as a label and column AJ (labels) is searched for a
match. A match returns the line entry under “value” (i.e. the value assigned).
No match returns zero. Note that duplicate labels return the sum of the values
and so are incorrect for all instances.

All bytes in the program are now contained in “opcode” and “operand”.
Columns H and I (“Code”) display the entries with the address of the opcode
in G (“Address”) derived from column X (“Byte#”).

6

Each entry in “opcode” and “operand” is assigned a byte number under
“Byte#” for each column. This is achieved by a running sum over the entries in
“opcode?” and “operand?”.

Column AA searches for the byte number entry in column Z in the opcode
Byte# column. A match returns the opcode. Similarly, column AB searches
the operand Byte# column and returns any match. Column AC combines the
two columns to provide the final assembled code.

Column AO determines what entry in the Op code is mandatory. Column AN
identifies the Instruction Codes with operands. For Instruction Codes with
operands in Ins, a missing entry in Op returns the value one, otherwise blank.
For Instruction Codes without operands an entry in Op returns the value one,
otherwise blank.

Columns AP and AQ mark the presence of Instructions and where appropriate
operands over the memory space. The number of bytes for each is summed
at the bottom and their sum in the cell to the right “LOC_sum”. “LOC_sum” is
used to determine which bytes are to be disassembled in the corresponding
view on the Processor sheet.

Column AR and AS detect and number labels for inclusion in the Label Table.
The inclusion of the index AT within AS returns the content of the Table in AU
and AV. The Table is formatted using a conditional format.

Column J “Error check” deals with errors. Column AO is checked and a non-
blank entry returns the value one. Column AK (Ins) is checked and blank,
“EQ”, “&” and “HLT” removed from the test. For other entries column U is
checked and should contain a recognised instruction (i.e. entry is non-zero). A
zero entry can only occur if the instruction entry is not recognised and the
returned entry in “Error check” is one.

Column F contains invisible text only made visible by conditional formatting
when an entry in “Error check” is not blank.

Column AI contains an error check which returns “TRUE” if a spreadsheet
error occurs during the conversion of a hex to decimal number. Otherwise the
entry is “FALSE”.

Column AH contains invisible text only made visible by conditional formatting
if the entry in column AI is “TRUE”.

7

4 ALU Acc

An entry into Processor sheet cell J9 (ALU instruction) is copied into “ALU
Acc” sheet cell C3 which highlights the ALU section of ALU Acc through the
conditional formatting.

In cell C26 the Instruction Code (mnemonic) at Processor sheet cell BF6 is
compared to the mnemonics listed in ALU Acc sheet cells E30:E33 and a
match copied. Conditional formatting highlights the Accumulator part of the
sheet when C26 is not blank.

Additional conditional formatting occurs for blocks of cells around AND, OR,
XOR, ADD and SUB portions where the names match the entry into C3. This
highlights the current instruction calculations because the sheet always
calculates all entries in the ALU for each ALU instruction.

Similarly, additional conditional formatting occurs in the Accumulator portion
around the SHL, SHR, ROL and ROR instructions.

The hidden cells “Shift_Acc” and “Carry_in” in columns V and W are set to the
values of the Accumulator and Carry flag during any fetch instruction by the
macro Clock so that the ALU Acc sheet input values are stable to the end of
the execution cycle (the Processor values are likely to change).

Other cell activity can be viewed directly in the spreadsheet.

8

5 Instruction Set

This sheet is at the heart of the emulator function. The instructions are defined
here along with their characteristics as defined by the column headings (blank
entries are effectively “N”). The column entries F to R determine how the
instruction is processed in the emulator. Column D determines the number of
processing cycles for each instruction. The other columns are largely
informative although there is some processing according to the mnemonic in
branching and on the “ALU Acc” sheet.

The summary of instruction entries over the entire code space (0 to 255) to
the right is derived automatically by the hidden columns T, U and V.

On loading instructions into the Instruction Register the properties are copied
using look-up formulae into the hidden part of the Processor sheet and are
core to the operation of the Clock macro.

9

6 Micro code

This sheet is documentation and provides no calculation role in the operation
of the emulator.

The codes contained in the “Microcode ROM Output” columns show the data
decoded from the Instruction Register as described in Book 1 Part 2 for Fetch
(0) and Execute (1 to 6) cycles. The low hex digit contained in the Fetch cycle
ROM output contains the number of cycles in the instruction. This digit is
loaded into a counter as described in Book 1 Part 2. The counter decrements
after each cycle until it reaches zero, whereupon the instruction Execute cycle
is completed.

The eight-bit Machine Code decodes the high eight bits of an 11-bit address
on the ROM. The low three bits are decoded from the counter. The address of
the resulting eight-bit blocks is given by multiplying the Machine Code by eight
(i.e. left shift three bits) and is shown in Column L “Opcode x 8”. The first byte
is the Fetch cycle output. The second byte is determined by the first byte
address plus the count less one, since the counter is decremented at the end
of each cycle.

The “Content of ROM” shows the final data programmed into the ROM that
delivers the required control lines. See Book 1 Part 2. The content is derived
from the hidden columns T to AR and AU.

10

7 Gates

The Gates sheet acts as the look-up map for Gate operation for all cycles
within all instructions. The sheet provides for up to six cycles for each
instruction, including the Fetch cycle.

The left set of columns labelled I to H contain the defining map which
determines when a Gate is open. That is, if the corresponding Gate is to be
open in a particular cycle as indicated by the cycle number 1 to 6, then the
map entry is “1”. Blank entry indicates a closed Gate. Cycle number 1 is
Fetch.

Column BI shows a marker at the instruction present in the Instruction
Register at any time. Cell BI1 contains the value of the cycle currently
selected (Fetch = 1).

The right set of columns I to H map the cycle number with the instruction and
copy the mapping across where they correspond. At the base of the columns
(the row above the repeated Gate headings) the map columns are added. The
sums of the added six cycle columns for each Gate appear in the bordered
boxes beneath the repeated Gate headings. An entry in a box indicates the
corresponding Gate is open on the current cycle. The status of the Gates on
the Processor sheet relate directly to the bordered boxes.

11

8 Concluding Remark

The spreadsheet and macro developments evolved over time and not on the
basis of a specification or a complete set of requirements. Therefore, a
simpler and more elegant implementation is undoubtedly possible and left as
an exercise.

12

APPENDIX: MACROS

The macros for each emulator type are shown in the following with notes
describing their function. The macros are as follows

Macro Name Button Notes
Clock Clock Each click advances the emulator by a

Machine Cycle and processes the
fetch/execute cycles. The contents of
registers are updated.

The macro contains a number of nested
“If” statements. To make reading the
macro simpler the nested level of the
statements is colour-coded here as
follows.
If (level 1)
 If (level 2)
 If (level 3)
 End If
 End If
End If

Coloured ElseIf statements occur
between the start and end at each level
as appropriate. Statements which are
easy to read are not colour-coded.

Reset Reset Sets register values to start values,
usually zero. Forces the Program
Counter to start the program from the
beginning.

Assembler Assemble Copies the Source code into the
assembler sheet for assembly.

Load_Memory Load Memory Copies the assembled output code into
the Processor memory.

Clear_Memory Clear Memory Clears the Processor memory to
zeroes.

Clear_Source Clear Code Fills the editable cells of the Source
sheet with blanks.

Select_Hex Hex Sets the Processor memory content
view to hexadecimal.

13

Macro Name Button Notes
Select_Dec Decimal Sets the Processor memory content

view to decimal.

Select_Dis Disassemble Sets the Processor memory content
view to instruction mnemonics and hex
data.

CreateFile Create Firmware Creates a 256 byte binary file
containing the byte output of the
Assembler sheet for use by the
simulator (Book 3).

14

1. EXCEL
Sub Clock()
'
' Increment the clock cycle count indicator
' Assume Execute cycle - if it is Fetch this will be over-written
'
 [clock_cycle] = [clock_cycle] + 1
 [Fetch] = "N"
 [Execute] = "Y"

Clicking the “Clock” button runs this program.

Each click is counted as clock_cycle. Most of the time the
program is processing Execute cycles, so this is set here as
the default. If it is actually a Fetch cycle, then this will be
corrected in the following.

'
' Check the LDI_flag
' If set increment the Programme Counter and reset the flag
' This adjustment compensates for ease of viewing PC during LDI
'
 If [LDI_flag] = "Y" Then
 [Program_Counter] = [Program_Counter] + 1
 [LDI_flag] = "N"
 End If

The emulator differs from the simulator (and a practical
design) when the Program Counter actually increments. In the
simulator this occurs at the end of the cycle. For clarity, the
emulator animation shows the Program Counter – Address
Bus Register – Memory flow and the PC is incremented at the
start of the next cycle. LDI is the only instruction where the PC
increment occurs in the last Execute cycle so the special flag
LDI_flag is used to increment the PC before the next
instruction is fetched. It is set when LDI is detected below.

'
' Increment the Machine Cycle count
' If the Execution is complete, reset the count to 1
'
 [MC_count] = [MC_count] + 1
 If [MC_count] > [MC_cycles] Then
 [MC_count] = 1
 End If

Each increment of the clock increments the Machine Cycle
count. If the MC count exceeds the number of cycles required
by the instruction then execution is completed and the MC
count is forced to one.

15

'
' Check for Fetch cycle MC Count is 1
'
 If [MC_count] = 1 Then
 [Fetch] = "Y"
 [Execute] = "N"
 [Add_Bus_Reg] = [Program_Counter]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [Ins_Register] = Cells(Row_Address, Col_Address)

Check if the MC count is one. If so, then the cycle is a Fetch,
so adjust the flags in the cells Fetch and Execute.

Fetch cycle processing is as follows:
Set the cell Add_Bus_Reg to the value in cell Program_
Counter. Calculate the variable Row_Address from the start of
the Machine Code given by the start (mem_start_row) plus the
content of Add_Bus_Reg. Set the Col_Address.
Set the cell Ins_Register to the content of the cell calculated.

' Also set-up Accumulator value in Shift register and Carry
 [Shift_Acc] = [Accumulator]
 [Carry_in] = [Carry_flag]

Set the Accumulator and Carry flag into cells held by the ALU
Acc sheet. This preserves the integrity of the sheet when the
values change in the Processor. These are only significant for
ALU Accumulator instructions.

Following the Fetch processing the further macro Elseif
checks are false and the macro ends.

16

'
' Other MC Count is Execute cycle
'
'
' Immediate Instructions
'
 ElseIf [Immediate] = "Y" Then
 [Program_Counter] = [Program_Counter] + 1
 If [MC_count] = 2 Then
 [Add_Bus_Reg] = [Program_Counter]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 If [Load_ins] = "Y" Then
 [Accumulator] = Cells(Row_Address, Col_Address)
 [LDI_flag] = "Y"
 ElseIf [ALU] = "Y" Then
 [ALU_Mem] = Cells(Row_Address, Col_Address)
 [ALU_Acc] = [Accumulator]
 [ALU_Result] = [ALU_out]
 If [Add_flag] = "Y" Then
 [Carry_flag] = [Carry_out_add]
 ElseIf [Sub_flag] = "Y" Then
 [Carry_flag] = [Carry_out_sub]
 End If
 End If

If MC count is not one the cycle is an Execute cycle. The
Immediate flag is checked. If the flag is set the following
processing occurs after which the macro ends.

The PC is incremented for each clock entry of the immediate
instruction. As described before, the emulator increments the
PC at the start of processing, so occurs here for MC count 2
and 3.

For MC count equals 2 the operand cell address is calculated
and processing occurs separately for the LDI and ALU
instructions.

For LDI the cell content is copied to the Accumulator. The LDI
flag is set so that the PC is incremented on the next clock
because no further entry here occurs for LDI (MC_count is
equal to MC_cycles at this point).

For ALU the cell content is copied to the ALU_Mem cell. The
Accumulator is copied to the ALU_Acc cell. The ALU Acc
sheet provides the result for the appropriate arithmetic/logic
instruction in ALU_out which is copied into ALU_Result.

For arithmetic instructions the appropriate output carry is
copied to the Carry flag.

17

 ElseIf [MC_count] = 3 Then
 If [ALU] = "Y" Then
 [Accumulator] = [ALU_Result]
 End If
 End If

For an immediate instruction of three Machine Cycles the code
following the test here is processed when MC count equals
three. This can only be an ALU instruction in this design (but is
tested anyway) and writes the result of the ALU into the
Accumulator.

'
' Memory operation instructions
'
 ElseIf [Load_Address] = "Y" Then
 If [MC_count] = 2 Then
 [Program_Counter] = [Program_Counter] + 1
 [Add_Bus_Reg] = [Program_Counter]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [Address_Register] = Cells(Row_Address, Col_Address)

If MC count is not one and the instruction is not immediate, a
check is made for an instruction operating memory. This
includes load, store and ALU instructions.

For MC count equals 2 the PC is incremented and the
Address Register loaded with the operand value using the
same address calculation seen in the above.

 ElseIf [MC_count] = 3 Then
 [Program_Counter] = [Program_Counter] + 1
 If [Indirect] = "Y" Then
 [Add_Bus_Reg] = [Address_Register]
 ElseIf [Load_ins] = "Y" Then
 [Add_Bus_Reg] = [Address_Register]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [Accumulator] = Cells(Row_Address, Col_Address)

For MC count equals 3 the PC is incremented.

For indirect instructions the Add_Bus_Reg is set to the value
in Address_Register. No further processing occurs for this
cycle.

For LDA the Accumulator is loaded with the value in memory
using the same address calculation seen in the above.

18

 ElseIf [Store] = "Y" Then
 [Add_Bus_Reg] = [Address_Register]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 Cells(Row_Address, Col_Address) = [Accumulator]

For STA the address calculation is as seen before but the
copy is from Accumulator to memory.

 ElseIf [ALU] = "Y" Then
 [Add_Bus_Reg] = [Address_Register]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [ALU_Mem] = Cells(Row_Address, Col_Address)
 [ALU_Acc] = [Accumulator]
 [ALU_Result] = [ALU_out]
 If [Add_flag] = "Y" Then
 [Carry_flag] = [Carry_out_add]
 ElseIf [Sub_flag] = "Y" Then
 [Carry_flag] = [Carry_out_sub]
 End If
 End If

For ALU instructions the address calculation is as seen before
and the data is loaded into ALU_Mem. The Accumulator is
copied into ALU_Acc and the result from the ALU Acc sheet
ALU_out into ALU_Result.

For arithmetic instructions the appropriate output carry is
copied to the Carry flag.

19

 ElseIf [MC_count] = 4 Then
 If [Indirect] = "Y" Then
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [Address_Register] = Cells(Row_Address, Col_Address)
 ElseIf [ALU] = "Y" Then
 [Accumulator] = [ALU_Result]
 End If

For MC count equals four the instruction is either indirect or an
ALU operation.

For indirect instructions the memory address to the data is
calculated and loaded into the Address Register.

For ALU instructions the result is copied to the accumulator.

 ElseIf [MC_count] = 5 Then
 [Add_Bus_Reg] = [Address_Register]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 If [Load_ins] = "Y" Then
 [Accumulator] = Cells(Row_Address, Col_Address)
 ElseIf [Store] = "Y" Then
 Cells(Row_Address, Col_Address) = [Accumulator]
 End If
 End If

For MC count equals five the instruction is an indirect memory
operation.

The address of the data is calculated. Data is loaded into the
Accumulator, or stored in memory, according to a read or write
instruction.

20

'
' Miscellaneous instructions
'
 ElseIf [Shift] = "Y" Then
 If [MC_count] = 2 Then
 [Program_Counter] = [Program_Counter] + 1
 [Accumulator] = [Shift_out]
 [Carry_flag] = [Carry_out_shift]
 End If

The Accumulator instructions are processed here. The PC is
incremented and the output from the ALU Acc sheet copied
into the Accumulator and Carry flag.

 ElseIf [Clear_Carry] = "Y" Then
 If [MC_count] = 2 Then
 [Program_Counter] = [Program_Counter] + 1
 [Carry_flag] = 0
 End If

The Clear Carry instruction forces the Carry flag to zero.

 ElseIf [Set_Carry] = "Y" Then
 If [MC_count] = 2 Then
 [Program_Counter] = [Program_Counter] + 1
 [Carry_flag] = 1
 End If

The Set Carry instruction forces the Carry flag to one.

21

'
' Branch instructions
'
 ElseIf [Branch] = "Y" Then
 If [MC_count] = 2 Then
 [Program_Counter] = [Program_Counter] + 1
 [Add_Bus_Reg] = [Program_Counter]
 Row_Address = [mem_start_row] + [Add_Bus_Reg]
 Col_Address = [mem_start_col]
 [Address_Register] = Cells(Row_Address, Col_Address)

Branch instruction execute cycle processing occurs here.

For MC count equals two the Address Register is loaded with
the instruction operand in the same way as seen before.

 ElseIf [MC_count] = 3 Then
 [Program_Counter] = [Program_Counter] + 1
 If [BrDecision] = 1 Then
 [Program_Counter] = [Address_Register]
 End If
 End If
 End If
End Sub

For MC count equals three the Branch condition result is
checked and the PC updated by the Address Register if Gate
H is opened.

End of macro

22

Sub Reset()
 [clock_cycle] = 0
 [MC_count] = 0
 [Program_Counter] = 0
 [Add_Bus_Reg] = 0
 [Ins_Register] = 0
 [Accumulator] = 0
 [ALU_Result] = 0
 [Address_Register] = 0
 [Carry_flag] = 0
 [Carry_in] = 0
 [ALU_Acc] = 0
 [ALU_Mem] = 0
 [Fetch] = "N"
 [Execute] = "N"
 [LDI_flag] = "N"
End Sub

Clicking the “Reset” button runs this program.

The named cells are set to the value shown (0 or N).

23

Sub Assembler()
 Sheets("Source").Select
 Range("C2:E129").Select
 Selection.Copy
 Sheets("Assembler").Select
 Range("AJ2").Select
 Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Range("A18").Select
 Sheets("Source").Select
 Range("L2").Select
 Application.CutCopyMode = False
 Sheets("Assembler").Select
End Sub

Clicking the “Assemble” button runs this program.

This macro copies the content of the editable cells on the
Source sheet into hidden cells on the Assembler sheet. Only
the values are copied. The hidden cells are visible in the copy
shown in the panel.

The cells are deselected and the active sheet on macro end is
the Assembler.

The macro was constructed using macro recording.

24

Sub Load_Memory()
 Sheets("Assembler").Select
 Range("AF3:AF258").Select
 Selection.Copy
 Sheets("Processor").Select
 Range("Memory_start").Select
 Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("Assembler").Select
 Application.CutCopyMode = False
 Range("A18").Select
 Sheets("Processor").Select
 Range("B18").Select
 [LOC_count] = [LOC_sum]
End Sub

Clicking the “Load Memory” button runs this program.

This macro copies the content of the output cells on the
Assembler sheet into hidden cells on the Processor sheet.
Only the values are copied. The hidden cells are visible in the
copy shown in the memory panel according to the selected
format (hex, decimal or disassemble).

The cells are deselected and the active sheet on macro end is
the Processor.

The macro was constructed using macro recording.

LOC_count is added to limit the disassemble view to the
instruction codes and not subsequent data.

25

Sub Clear_Memory()
 Range("AC25:AC280").Select
 Selection.Copy
 Range("Memory_start").Select
 Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Range("B18").Select
 Application.CutCopyMode = False
 [LOC_count] = 0
End Sub

This macro copies the content of a range of cells set to zero
on the Processor sheet into hidden memory cells on the
Processor sheet. Only the values are copied. The hidden cells
are visible in the copy shown in the memory panel according
to the selected format (hex, decimal or disassemble).

The cells are deselected and the active sheet on macro end is
the Processor.

The macro was constructed using macro recording.

LOC_count is added to limit the disassemble view to the
instruction codes and not subsequent data. It is set to zero.

Sub Clear_Source()
Range("F2:H129").Select
 Selection.Copy
 Range("C2").Select
 Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Range("A20").Select
 Application.CutCopyMode = False
End Sub

This macro copies the content of a range of cells set to blank
on the Source sheet into the editable panel on the Source
sheet. Only the values are copied.

The cells are deselected.

The macro was constructed using macro recording.

26

Sub Select_Hex()

 [DHDSwitch] = 1

End Sub

Clicking the “Hex”, “Decimal” and “Disassemble” buttons run
the respective program.

The three macros set the value in cell DHDSwitch as showm.
DHDSwitch is used in IF statements to control the memory
view.Sub Select_Dec()

 [DHDSwitch] = 0

End Sub
Sub Select_Dis()

 [DHDSwitch] = 2

End Sub

27

Sub CreateFile()

Dim i As Long
Dim RowNum As Long
Dim ColNum As Long

Open "Firmware.bin" For Binary As #1

With ActiveSheet
 RowNum = .Range("Assemb_output").Row
 ColNum = .Range("Assemb_output").Column
 For i = 0 To 255
 Put #1, , CByte(Cells(RowNum + i, ColNum).Value)
 Next
End With

Close #1

MsgBox "Done!"

End Sub

Clicking the “Create Firmware” button runs this program.

This macro creates a binary file for use by the simulator (Book
3).

The macro opens or creates and opens the file “Firmware.bin”
in the directory path defined by the “Default file location” set in
the “General” tab of the spreadsheet options.

The binary file is defined by the 256 bytes created from the
256 cells running below the cell “Assemb_output”.

Once defined, the file is saved and closed.

The message box provides positive feedback to the user that
the task has been performed successfully.

28

2. CALC
Sub Clock()

Doc = ThisComponent

Processor = Doc.Sheets.getByName("Processor")
ALU_Shift = Doc.Sheets.getByName("ALU Acc")

Accumulator = Processor.getCellrangeByName("Accumulator")
Add_Bus_Reg = Processor.getCellrangeByName("Add_Bus_Reg")
Add_flag = Processor.getCellrangeByName("Add_flag")
Address_Register = Processor.getCellrangeByName("Address_Register")
ALU = Processor.getCellrangeByName("ALU")
ALU_Acc = Processor.getCellrangeByName("ALU_Acc")
ALU_Mem = Processor.getCellrangeByName("ALU_Mem")
ALU_Result = Processor.getCellrangeByName("ALU_Result")
Branch = Processor.getCellrangeByName("Branch")
BrDecision = Processor.getCellrangeByName("BrDecision")
Carry_flag = Processor.getCellrangeByName("Carry_flag")
Clear_Carry = Processor.getCellrangeByName("Clear_Carry")
clock_cycle = Processor.getCellrangeByName("clock_cycle")
Execute = Processor.getCellrangeByName("Execute")
Fetch = Processor.getCellrangeByName("Fetch")
Immediate = Processor.getCellrangeByName("Immediate")
Ins_Register = Processor.getCellrangeByName("Ins_Register")
Instruction = Processor.getCellrangeByName("Instruction")
LDI_flag = Processor.getCellrangeByName("LDI_flag")
Indirect = Processor.getCellrangeByName("Indirect")

Clicking the “Clock” button runs this program.

In OpenOffice Basic the objects used in the
program have to be explicitly defined. The
document, sheets and cells are explicitly
defined here for the macro.

29

Load_Address = Processor.getCellrangeByName("Load_Address")
Load_ins = Processor.getCellrangeByName("Load_ins")
MC_count = Processor.getCellrangeByName("MC_count")
MC_cycles = Processor.getCellrangeByName("MC_cycles")
mem_start_col = Processor.getCellrangeByName("mem_start_col")
mem_start_row = Processor.getCellrangeByName("mem_start_row")
Program_Counter = Processor.getCellrangeByName("Program_Counter")
Set_Carry = Processor.getCellrangeByName("Set_Carry")
Shift = Processor.getCellrangeByName("Shift")
Store = Processor.getCellrangeByName("Store")
Sub_flag = Processor.getCellrangeByName("Sub_flag")
zero_flag = Processor.getCellrangeByName("zero_flag")

ALU_out = ALU_Shift.getCellrangeByName("ALU_out")
Carry_in = ALU_Shift.getCellrangeByName("Carry_in")
Carry_out_add = ALU_Shift.getCellrangeByName("Carry_out_add")
Carry_out_shift = ALU_Shift.getCellrangeByName("Carry_out_shift")
Carry_out_sub = ALU_Shift.getCellrangeByName("Carry_out_sub")
Shift_Acc = ALU_Shift.getCellrangeByName("Shift_Acc")
Shift_out = ALU_Shift.getCellrangeByName("Shift_out")

30

Rem '
Rem ' Increment the clock cycle count indicator
Rem ' Assume Execute cycle - if it is Fetch this will be over-written
Rem '
 clock_cycle.Value = clock_cycle.Value + 1
 Fetch.setString("N")
 Execute.setString("Y")

Each click is counted as clock_cycle. Most of
the time the program is processing Execute
cycles, so this is set here as the default. If it is
actually a Fetch cycle, then this will be
corrected in the following.

Rem '
Rem ' Check the LDI_flag
Rem ' If set increment the Programme Counter and reset the flag
Rem ' This adjustment compensates for ease of viewing PC during LDI
Rem '
 If LDI_flag.String = "Y" Then
 Program_Counter.Value = Program_Counter.Value + 1
 LDI_flag.setString("N")
 End If

The emulator differs from the simulator (and a
practical design) when the Program Counter
actually increments. In the simulator this
occurs at the end of the cycle. For clarity, the
emulator animation shows the Program
Counter – Address Bus Register – Memory
flow and the PC is incremented at the start of
the next cycle. LDI is the only instruction where
the PC increment occurs in the last Execute
cycle so the special flag LDI_flag is used to
increment the PC before the next instruction is
fetched. It is set when LDI is detected below.

Rem '
Rem ' Increment the Machine Cycle count
Rem ' If the Execution is complete, reset the count to 1
Rem '
 MC_count.Value = MC_count.Value + 1
 If MC_count.Value > MC_cycles.Value Then
 MC_count.Value = 1
 End If

Each increment of the clock increments the
Machine Cycle count. If the MC count exceeds
the number of cycles required by the
instruction then execution is completed and the
MC count is forced to one.

31

Rem '
Rem ' Check for Fetch cycle MC Count is 1
Rem '
 If MC_count.Value = 1 Then
 Fetch.setString("Y")
 Execute.setString("N")
 Add_Bus_Reg.Value = Program_Counter.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Ins_Register.Value = temp.Value

Check if the MC count is one. If so, then the
cycle is a Fetch, so adjust the flags in the cells
Fetch and Execute.

Fetch cycle processing is as follows:
Set the cell Add_Bus_Reg to the value in cell
Program_ Counter. Calculate the variable
Row_Address from the start of the Machine
Code given by the start (mem_start_row) plus
the content of Add_Bus_Reg. Set the
Col_Address.
Set the cell Ins_Register to the content of the
cell calculated.

Rem ' Also set-up Accumulator value in Shift register and Carry
 Shift_Acc.Value = Accumulator.Value
 Carry_in.Value = Carry_flag.Value

Set the Accumulator and Carry flag into cells
held by the ALU Acc sheet. This preserves the
integrity of the sheet when the values change
in the Processor. These are only significant for
ALU Accumulator instructions.

32

Rem '
Rem ' Other MC Count is Execute cycle
Rem '
Rem '
Rem ' Immediate Instructions
Rem '
 ElseIf Immediate.String = "Y" Then
 Program_Counter.Value = Program_Counter.Value + 1
 If MC_count.Value = 2 Then
 Add_Bus_Reg.Value = Program_Counter.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 If Load_ins.String = "Y" Then
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Accumulator.Value = temp.value
 LDI_flag.setString("Y")
 ElseIf ALU.String = "Y" Then
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 ALU_Mem.Value = temp.value
 ALU_Acc.Value = Accumulator.Value
 ALU_Result.Value = ALU_out.Value
 If Add_flag.String = "Y" Then
 Carry_flag.Value = Carry_out_add.Value
 ElseIf Sub_flag.String = "Y" Then
 Carry_flag.Value = Carry_out_sub.Value
 End If
 End If

If MC count is not one the cycle is an Execute cycle.
The Immediate flag is checked. If the flag is set the
following processing occurs after which the macro
ends.

The PC is incremented for each clock entry of the
immediate instruction. As described before, the
emulator increments the PC at the start of processing,
so occurs here for MC count 2 and 3.

For MC count equals 2 the operand cell address is
calculated and processing occurs separately for the
LDI and ALU instructions.

For LDI the cell content is copied to the Accumulator.
The LDI flag is set so that the PC is incremented on
the next clock because no further entry here occurs
for LDI (MC_count is equal to MC_cycles at this
point).

For ALU the cell content is copied to the ALU_Mem
cell. The Accumulator is copied to the ALU_Acc cell.
The ALU Acc sheet provides the result for the
appropriate arithmetic/logic instruction in ALU_out
which is copied into ALU_Result.

For arithmetic instructions the appropriate output
carry is copied to the Carry flag.

33

Rem
 ElseIf MC_count.Value = 3 Then
 If ALU.String = "Y" Then
 Accumulator.Value = ALU_Result.Value
 End If
 End If

For an immediate instruction of three Machine
Cycles the code following the test here is
processed when MC count equals three. This
can only be an ALU instruction in this design
(but is tested anyway) and writes the result of
the ALU into the Accumulator.

Rem '
Rem ' Memory operation instructions
Rem '
 ElseIf Load_Address.String = "Y" Then
 If MC_count.Value = 2 Then
 Program_Counter.Value = Program_Counter.Value + 1
 Add_Bus_Reg.Value = Program_Counter.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Address_Register.Value = temp.value

If MC count is not one and the instruction is not
immediate, a check is made for an instruction
operating memory. This includes load, store
and ALU instructions.

For MC count equals 2 the PC is incremented
and the Address Register loaded with the
operand value using the same address
calculation seen in the above.

34

 ElseIf MC_count.Value = 3 Then
 Program_Counter.Value = Program_Counter.Value + 1
 If Indirect.String = "Y" Then
 Add_Bus_Reg.Value = Address_Register.Value
 ElseIf Load_ins.String = "Y" Then
 Add_Bus_Reg.Value = Address_Register.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Accumulator.Value = temp.value

For MC count equals 3 the PC is incremented.

For indirect instructions the Add_Bus_Reg is
set to the value in Address_Register. No
further processing occurs for this cycle.

For LDA the Accumulator is loaded with the
value in memory using the same address
calculation seen in the above.

35

 ElseIf Store.String = "Y" Then
 Add_Bus_Reg.Value = Address_Register.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 temp.value = Accumulator.Value

For STA the address calculation is as seen
before but the copy is from Accumulator to
memory.

 ElseIf ALU.String = "Y" Then
 Add_Bus_Reg.Value = Address_Register.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 ALU_Mem.Value = temp.value
 ALU_Acc.Value = Accumulator.Value
 ALU_Result.Value = ALU_out.Value
 If Add_flag.String = "Y" Then
 Carry_flag.Value = Carry_out_add.Value
 ElseIf Sub_flag.String = "Y" Then
 Carry_flag.Value = Carry_out_sub.Value
 End If
 End If

For ALU instructions the address calculation is
as seen before and the data is loaded into
ALU_Mem. The Accumulator is copied into
ALU_Acc and the result from the ALU Acc
sheet ALU_out into ALU_Result.

For arithmetic instructions the appropriate
output carry is copied to the Carry flag.

36

Rem
 ElseIf MC_count.Value = 4 Then
 If Indirect.String = "Y" Then
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Address_Register.Value = temp.Value
 ElseIf ALU.String = "Y" Then
 Accumulator.Value = ALU_Result.Value
 End If

For MC count equals four the instruction is
either indirect or an ALU operation.

For indirect instructions the memory address to
the data is calculated and loaded into the
Address Register.

For ALU instructions the result is copied to the
accumulator.

Rem
 ElseIf MC_count.Value = 5 Then
 Add_Bus_Reg.Value = Address_Register.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 If Load_ins.String = "Y" Then
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Accumulator.Value = temp.Value
 ElseIf Store.String = "Y" Then
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 temp.Value = Accumulator.Value
 End If
 End If

For MC count equals five the instruction is an
indirect memory operation.

The address of the data is calculated. Data is
loaded into the Accumulator, or stored in
memory, according to a read or write
instruction.

37

Rem '
Rem ' Miscellaneous instructions
Rem '
 ElseIf Shift.String = "Y" Then
 If MC_count.Value = 2 Then
 Program_Counter.Value = Program_Counter.Value + 1
 Accumulator.Value = Shift_out.Value
 Carry_flag.Value = Carry_out_shift.Value
 End If

The Accumulator instructions are processed
here. The PC is incremented and the output
from the ALU Acc sheet copied into the
Accumulator and Carry flag.

Rem
 ElseIf Clear_Carry.String = "Y" Then
 If MC_count.Value = 2 Then
 Program_Counter.Value = Program_Counter.Value + 1
 Carry_flag.Value = 0
 End If

The Clear Carry instruction forces the Carry
flag to zero.

Rem
 ElseIf Set_Carry.String = "Y" Then
 If MC_count.Value = 2 Then
 Program_Counter.Value = Program_Counter.Value + 1
 Carry_flag.Value = 1
 End If

The Set Carry instruction forces the Carry flag
to one.

38

Rem '
Rem ' Branch instructions
Rem '
 ElseIf Branch.String = "Y" Then
 If MC_count.Value = 2 Then
 Program_Counter.Value = Program_Counter.Value + 1
 Add_Bus_Reg.Value = Program_Counter.Value
 Row_Address = mem_start_row.Value + Add_Bus_Reg.Value
 Col_Address = mem_start_col.Value
 temp = Processor.getCellByPosition(Col_Address, Row_Address)
 Address_Register.Value = temp.Value

Branch instruction execute cycle processing
occurs here.

For MC count equals two the Address Register
is loaded with the instruction operand in the
same way as seen before.

Rem
 ElseIf MC_count.Value = 3 Then
 Program_Counter.Value = Program_Counter.Value + 1
 If BrDecision.Value = 1 Then
 Program_Counter.Value = Address_Register.Value
 End If
 End If
Rem
 End If
Rem
End Sub

For MC count equals three the Branch
condition result is checked and the PC updated
by the Address Register if Gate H is opened.

End of macro

39

Sub Reset()

Doc = ThisComponent

Processor = Doc.Sheets.getByName("Processor")
ALU_Shift = Doc.Sheets.getByName("ALU Acc")

clock_cycle = Processor.getCellrangeByName("clock_cycle")
MC_count = Processor.getCellrangeByName("MC_count")
Program_Counter = Processor.getCellrangeByName("Program_Counter")
Add_Bus_Reg = Processor.getCellrangeByName("Add_Bus_Reg")
Ins_Register = Processor.getCellrangeByName("Ins_Register")
Accumulator = Processor.getCellrangeByName("Accumulator")
ALU_Result = Processor.getCellrangeByName("ALU_Result")
Address_Register = Processor.getCellrangeByName("Address_Register")
Carry_flag = Processor.getCellrangeByName("Carry_flag")
ALU_Acc = Processor.getCellrangeByName("ALU_Acc")
ALU_Mem = Processor.getCellrangeByName("ALU_Mem")
Fetch = Processor.getCellrangeByName("Fetch")
Execute = Processor.getCellrangeByName("Execute")
LDI_flag = Processor.getCellrangeByName("LDI_flag")
Carry_in = ALU_Shift.getCellrangeByName("Carry_in")

Clicking the “Reset” button runs this program.

In OpenOffice Basic the objects used in the
program have to be explicitly defined. The
document, sheets and cells are explicitly
defined here for the macro.

40

clock_cycle.Value = 0
MC_count.Value = 0
Program_Counter.Value = 0
Add_Bus_Reg.Value = 0
Ins_Register.Value = 0
Accumulator.Value = 0
ALU_Result.Value = 0
Address_Register.Value = 0
Carry_flag.Value = 0
ALU_Acc.Value = 0
ALU_Mem.Value = 0
Fetch.setString("N")
Execute.setString("N")
LDI_flag.setString("N")
Carry_in.Value = 0

End Sub

The named cells are set to the value shown (0 or N).

41

sub Assembler
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Nr"
args1(0).Value = 3

dispatcher.executeDispatch(document, ".uno:JumpToTable", "", 0, args1())

rem --
dim args2(0) as new com.sun.star.beans.PropertyValue
args2(0).Name = "ToPoint"
args2(0).Value = "C2"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args2())

This macro copies the content of the editable cells
on the Source sheet into hidden cells on the
Assembler sheet. Only the values are copied. The
hidden cells are visible in the copy shown in the
panel.

The cells are deselected and the active sheet on
macro end is the Assembler.

The macro was constructed using macro recording.

42

rem --
dim args3(0) as new com.sun.star.beans.PropertyValue
args3(0).Name = "ToPoint"
args3(0).Value = "C2:E129"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args3())

rem --
dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())

rem --
dim args5(0) as new com.sun.star.beans.PropertyValue
args5(0).Name = "Nr"
args5(0).Value = 2

dispatcher.executeDispatch(document, ".uno:JumpToTable", "", 0, args5())

rem --
dim args6(0) as new com.sun.star.beans.PropertyValue
args6(0).Name = "ToPoint"
args6(0).Value = "AJ2"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args6())

43

rem --
dim args7(5) as new com.sun.star.beans.PropertyValue
args7(0).Name = "Flags"
args7(0).Value = "SVD"
args7(1).Name = "FormulaCommand"
args7(1).Value = 0
args7(2).Name = "SkipEmptyCells"
args7(2).Value = false
args7(3).Name = "Transpose"
args7(3).Value = false
args7(4).Name = "AsLink"
args7(4).Value = false
args7(5).Name = "MoveMode"
args7(5).Value = 4

dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0, args7())

rem --
dim args8(0) as new com.sun.star.beans.PropertyValue
args8(0).Name = "ToPoint"
args8(0).Value = "A4"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args8())

end sub

44

sub Load_Memory
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Nr"
args1(0).Value = 2

dispatcher.executeDispatch(document, ".uno:JumpToTable", "", 0, args1())

rem --
dim args2(0) as new com.sun.star.beans.PropertyValue
args2(0).Name = "ToPoint"
args2(0).Value = "AF3"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args2())

This macro copies the content of the output cells on
the Assembler sheet into hidden cells on the
Processor sheet. Only the values are copied. The
hidden cells are visible in the copy shown in the
memory panel according to the selected format
(hex, decimal or disassemble).

The cells are deselected and the active sheet on
macro end is the Processor.

The macro was constructed using macro recording.

LOC_count was added to limit the disassemble view
to the instruction codes and not subsequent data.

45

rem --
dim args3(0) as new com.sun.star.beans.PropertyValue
args3(0).Name = "ToPoint"
args3(0).Value = "AF3:AF258"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args3())

rem --
dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())

rem --
dim args5(0) as new com.sun.star.beans.PropertyValue
args5(0).Name = "Nr"
args5(0).Value = 1

dispatcher.executeDispatch(document, ".uno:JumpToTable", "", 0, args5())

rem --
dim args6(0) as new com.sun.star.beans.PropertyValue
args6(0).Name = "ToPoint"
args6(0).Value = "BA25"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args6())

46

rem --
dim args7(5) as new com.sun.star.beans.PropertyValue
args7(0).Name = "Flags"
args7(0).Value = "SVD"
args7(1).Name = "FormulaCommand"
args7(1).Value = 0
args7(2).Name = "SkipEmptyCells"
args7(2).Value = false
args7(3).Name = "Transpose"
args7(3).Value = false
args7(4).Name = "AsLink"
args7(4).Value = false
args7(5).Name = "MoveMode"
args7(5).Value = 4

dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0, args7())

Doc = ThisComponent

Processor = Doc.Sheets.getByName("Processor")
temp = Doc.Sheets.getByName("Assembler")

LOC_count = Processor.getCellrangeByName("LOC_count")
LOC_sum = temp.getCellrangeByName("LOC_sum")

LOC_count.Value = LOC_sum.Value

47

rem --
dim args8(0) as new com.sun.star.beans.PropertyValue
args8(0).Name = "ToPoint"
args8(0).Value = "B18"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args8())

end sub

sub Clear_Memory
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "ToPoint"
args1(0).Value = "AC25"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args1())

This macro copies the content of a range of cells set
to zero on the Processor sheet into hidden memory
cells on the Processor sheet. Only the values are
copied. The hidden cells are visible in the copy
shown in the memory panel according to the
selected format (hex, decimal or disassemble).

The cells are deselected and the active sheet on
macro end is the Processor.

The macro was constructed using macro recording.

LOC_count was added to limit the disassemble view
to the Instruction Codes and not subsequent data. It
is set to zero.

48

rem --
dim args2(0) as new com.sun.star.beans.PropertyValue
args2(0).Name = "ToPoint"
args2(0).Value = "AC25:AC280"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args2())

rem --
dispatcher.executeDispatch(document, ".uno:Copy", "", 0, Array())

rem --
dim args4(0) as new com.sun.star.beans.PropertyValue
args4(0).Name = "ToPoint"
args4(0).Value = "BA25"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args4())

49

rem --
dim args5(5) as new com.sun.star.beans.PropertyValue
args5(0).Name = "Flags"
args5(0).Value = "SVD"
args5(1).Name = "FormulaCommand"
args5(1).Value = 0
args5(2).Name = "SkipEmptyCells"
args5(2).Value = false
args5(3).Name = "Transpose"
args5(3).Value = false
args5(4).Name = "AsLink"
args5(4).Value = false
args5(5).Name = "MoveMode"
args5(5).Value = 4

dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0, args5())

Doc = ThisComponent

Processor = Doc.Sheets.getByName("Processor")

LOC_count = Processor.getCellrangeByName("LOC_count")

LOC_count.Value = 0

50

rem --
dim args6(0) as new com.sun.star.beans.PropertyValue
args6(0).Name = "ToPoint"
args6(0).Value = "B18"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args6())

end sub

51

sub Clear_Code
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(0) as new com.sun.star.beans.PropertyValue
args1(0).Name = "ToPoint"
args1(0).Value = "C2"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args1())

This macro copies the content of a range of cells set
to blank on the Source sheet into editable panel on
the Source sheet. Only the values are copied.

The cells are deselected.

The macro was constructed using macro recording.

52

rem --
dim args2(0) as new com.sun.star.beans.PropertyValue
args2(0).Name = "ToPoint"
args2(0).Value = "C2:E129"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args2())

rem --
dispatcher.executeDispatch(document, ".uno:ClearContents", "", 0, Array())

rem --
dim args4(0) as new com.sun.star.beans.PropertyValue
args4(0).Name = "ToPoint"
args4(0).Value = "A9"

dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args4())

end sub

53

Sub Select_Hex()
Doc = ThisComponent
Processor = Doc.Sheets.getByName("Processor")
DHDSwitch = Processor.getCellrangeByName("DHDSwitch")

DHDSwitch.Value = 1
End Sub

The three macros set the value in cell DHDSwitch
as showm. DHDSwitch is ised in IF statements to
control the memory view.

Sub Select_Dec()
Doc = ThisComponent
Processor = Doc.Sheets.getByName("Processor")
DHDSwitch = Processor.getCellrangeByName("DHDSwitch")

DHDSwitch.Value = 0
End Sub

Sub Select_Dis()
Doc = ThisComponent
Processor = Doc.Sheets.getByName("Processor")
DHDSwitch = Processor.getCellrangeByName("DHDSwitch")

DHDSwitch.Value = 2
End Sub

54

Sub Create_file

Dim FileNo As Integer
Dim Filename As String
Dim MyByte As Byte
Dim path As String

Doc = ThisComponent
Mysheet = Doc.Sheets.getByName("Assembler")

GlobalScope.BasicLibraries.loadLibrary("Tools")
path = DirectoryNameoutofPath(Doc.getURL(),"/")

Filename = path & "/Firmware.bin"
FileNo = FreeFile

Open Filename For Binary As #FileNo

For i = 2 to 257
MyByte = CByte(Mysheet.getCellByPosition(31,i).Value)
Put #FileNo, , MyByte

Next i

Close #FileNo
MsgBox "Done!!"
End Sub

This macro creates a binary file for use by the
simulator (Book 3).

The macro opens or creates and opens the file
“Firmware.bin” in the same directory as the
emulator.

The binary file is defined by the 256 bytes created
from the 256 cells running below the cell
“Assemb_output” explicitly referenced by cell
position.

Once defined, the file is saved and closed.

The message box provides positive feedback to the
user that the task has been performed successfully.

55

	1 Introduction
	2 Processor Sheet
	3 Assembler
	4 ALU Acc
	5 Instruction Set
	6 Micro code
	7 Gates
	8 Concluding Remark

