
DIGITAL MAGIC EXPOSED

Book 2 – The Simple Digital Processor Emulator

1

Forward

Book 1 introduces the fundamentals of digital processing by describing a
simple processor. This book describes an emulation of the simple processor
through the use of one of two widely available spreadsheet tools: Microsoft
Excel and Apache OpenOffice Calc. The emulator provides a graphical
demonstration of the processor as it calculates each machine cycle.

The use of a spreadsheet program may appear a little odd. However, both the
spreadsheet programs are extremely feature-rich and easy to use. It is
intended that the emulator is modifiable without the need for additional tools.

The emulator may be used as an illustration to Book 1 Part 1. The examples
given in Book 1 are included in the emulator (although it is simple to add them
directly). Other examples from the books are included and additional
programs can be added by the user as required.

The emulator includes a mnemonic source code editor and assembler.
Additionally, binary files can be created to load programs directly into the
electronic simulation of the simple processor in Book 3.

Microsoft Excel is part of the Microsoft Office suite of programs available
widely. Calc is part of the Open Office open source suite available freely from
the Openoffice web-site.

This book consists of two parts:
 Part 1 – This part describes the emulator and its operation. Installation

requirements for each tool (using Excel or Calc) are detailed.
 Part 2 – This part provides some detail on the emulator’s

spreadsheets and macros to aid further development of the emulator.

2

Part 1 – Installing and Operating the Emulator

Forward..2
1 Installation...4

1.1 Macros...4
1.2 Notes for Excel..4
1.3 Notes for Calc..5
1.4 Creating versions, keeping back-ups..7
1.5 Document protection (sheets)...7

2 Overview...8
2.1 Introduction..8
2.2 Main View – Processor Sheet...8
2.3 Assembler...10
2.4 Source...11
2.5 ALU Acc..11
2.6 Program Store...12
2.7 Other Sheets...12

3 User Guide...13
4 Processor Sheet Description..15
5 Writing Instruction Codes...19

5.1 Labels..19
5.2 Instructions..20
5.3 Operands...22

6 ALU Acc Sheet...23
6.1 ALU..24
6.2 Accumulator..28

3

1 Installation

The emulator requires that Microsoft Excel or Apache Open Office is installed
on the pc. Although each of these spreadsheet tools is capable of opening
files of the other type it is important that the corresponding file type is run or
the emulator will not function. Before either of the emulators can be run
attention is drawn to a few important properties.

1.1 Macros
The emulators make use of unsigned macros in their operation. The default
security level of both Excel and Calc will block the use of unsigned macros
and the emulator will not function. Note that it is not advisable to run macros
that cannot be trusted since it is possible to write malicious macros.

Obtaining a “Trusted Authority” signature for general use is costly for an
educational tool offered for free. The macros used in the emulator are
harmless and fully described in Part 2 of this book. Published versions are
shown, so it is possible to check the macros within the spreadsheet before
allowing them to run.

For the emulator to run the spreadsheet program must be satisfied the
macros are trusted to be safe. This can be achieved either by running the
emulator from a “Trusted Location” or altering the “Trust Centre” settings for
the spreadsheet. Generally, the first option is preferred but is not available to
Microsoft Office 2003. Both techniques are effective for successful operation
of the emulator and are described for each spreadsheet in the following.

Note that it is necessary to restart the spreadsheet and possibly the computer
for the new security settings to take effect before the emulator can be opened.

1.2 Notes for Excel

1.2.1 Version
The emulator was developed using Microsoft Office 2003. Therefore, it is
expected that Excel 2003 or later is used.

1.2.2 Setting the Trusted Location
For Excel versions after 2003 the “Trust Centre” can be updated to include the
folder (file path) into which the emulator is placed. To do this, open Excel
(blank sheet) and select the Trust Centre as follows.

File > Options > Trust Centre

Select “Trust Centre Settings”. In the left pane select “Trusted Locations” and
(using “Add new location”) add the file path for the emulator. (An easy way to

4

do this is to view the emulator file in Explorer and click an empty space in the
file path viewer. The path is shown selected and can be copied for pasting in
the Trusted Locations). Click “OK”. Close Excel.

1.2.3 Setting the Trust Centre
This is the only option for Excel 2003. To observe and modify the macro
security level, open Excel (blank sheet). On the menu bar select

Tools > Macro > Security

The “Security Level” tab shows the level on a radio button. The default setting
is “High” and the macros will not run. The “Medium” setting provides an alert
that macros are present and buttons for enabling or disabling them when the
emulator is opened. Select the Medium option; click “OK” and close Excel. To
run the emulator, choose the “Enable Macros” button only when starting-up
the emulator.

1.2.4 Analysis ToolPak
The emulator makes extensive use of an Excel function which converts
decimal numbers to hexadecimal numbers. This function has been a standard
Excel function in versions of Excel after 2003, but not in 2003. If Excel 2003 is
used, then the “Analysis Toolpak” add-in needs to be selected. This is
achieved by opening Excel and on the menu bar select

Tools > Add-ins…

Check the “Analysis ToolPak” box and click “OK”. Note that if Add-ins are not
loaded then Excel will attempt to load them, possibly from the Office
installation disk. This procedure must complete. The emulator will not function
properly on Excel 2003 without Analysis ToolPak. If this remains unavailable
then using the Calc version is recommended (i.e. install Open Office).

Once added, Analysis ToolPak is always included whenever Excel runs on
the pc.

1.2.5 Program Close
The emulator very often requests a save when it is closed. The response
selected should always be “no”. Version control is outlined in section 1.4.

1.3 Notes for Calc

1.3.1 Version
The emulator was developed on Apache OpenOffice 4.1.5.

5

1.3.2 Setting the Trusted Location
To observe and modify trusted locations, open Calc (blank sheet)
spreadsheet. On the menu bar select

Tools > Options

In the left-hand pane under “OpenOffice” select “Security”. The security
options appear in the right-hand pane. Click on the “Macro Security” button.

The “Trusted Sources” tab shows the “Trusted file locations”. Select “Add…”
to add the file path of the emulator and click “OK”, followed by “OK” on the
Options window and close Calc. (An easy way to do this is to view the
emulator file in Explorer and click an empty space in the file path viewer. The
path is shown selected and can be copied for pasting in the Trusted file
locations).

1.3.3 Setting the Trust Centre
Included for completeness but updating the Trusted Location is the
recommended option.

To observe and modify the macro security level, open Calc (blank sheet)
spreadsheet. On the menu bar select

Tools > Options

In the left-hand pane under “OpenOffice” select “Security”. The security
options appear in the right-hand pane. Click on the “Macro Security” button.

The “Security Level” tab shows the level on a radio button. The default setting
is “High” and the macros will not run. The “Medium” setting provides an alert
that macros are present and buttons for enabling or disabling them when the
emulator is opened. Select the Medium option; click “OK”, followed by “OK” on
the Options window and close Calc. To run the emulator, choose the “Enable
Macros” button only when starting-up the emulator.

1.3.4 Using the Calc Emulator for the First Time
During first-use a dialog box may appear warning of cell data over-writes.
Check the “Do not show warning again” box and click “Yes”.

1.3.5 Program Close
The emulator very often requests a save when it is closed. The response
selected should always be “Discard”. Version control is outlined in section 1.4.

6

1.4 Creating versions, keeping back-ups

The emulator spreadsheet requests a save most of the times it is closed.
Therefore, it is easy to save a changed emulator with the same name as
supplied. It is for the user to manage emulator versions. As a minimum, a
copy of the supplied emulator should be kept safe somewhere. It is
recommended that changed emulators have changed filenames.

For modified versions which are to be kept (e.g. added code), the “save as”
option should be used with an appropriate filename.

If versions are saved elsewhere such as a different directory, attention is
drawn to the security restrictions on macros noted earlier.

1.5 Document protection (sheets)

All the sheets in the emulator have sheet protection applied. Only the sheets
“Source” and “Program Store” contain cells (in white) which can be edited
directly. The sheet protection for the supplied emulator does not include a
password on any of the sheets.

The purpose of the protection is to prevent accidental alteration of the sheets
during normal use. Clearly, it would be very easy to disrupt the operation of
the emulator by altering a cell without protection.

To change a sheet or view hidden rows or columns, a sheet can be
unprotected as follows:

 For Excel: Select Tools > Protection > Unprotect Sheet…

 For Calc: Select Tools > Protect Document > Sheet…

Protection may be reapplied by the same procedure to reverse the action. An
additional dialog box appears during this procedure which requires no
modification (i.e. click “OK”).

There are no hidden sheets.

7

2 Overview

2.1 Introduction

Book 1 Part 1 introduces the basic concepts at the heart of today’s technology
devices. Fundamentally, the processor is a general purpose machine which
can perform calculations limited only to its designed capability and the
imagination of the programmer. Without the program, and the Machine Code
it generates, the processor has no purpose.

Software is not in the scope of these books. Software applies a level of
abstraction which makes the inner workings of the processor invisible and
greatly increases the productivity of software engineering. Ultimately, software
does generate the Machine Code which runs on the processor.

In this book the programs are written using the simple processor Instruction
Codes (instruction mnemonics and any data) developed in Book 1 since these
are much easier for a person to handle than Machine Code. The emulator tool
provides a set of screens which enables instructions to be written, converted
to Machine Code, loaded into the emulator and the program stepped through
as it runs.

2.2 Main View – Processor Sheet

When the emulator is opened the processor sheet appears (Figure 1).

The screen provides a representation of the simple processor described in
Book 1. In Figure 1 there is currently no program data loaded into memory. All
256 bytes of memory can be seen with the data displayed in hexadecimal.
The shading in memory indicates the row and column decoded and hence the
memory location (with black background) which could be selected for a read
or write.

The main features of the sheet are described here. A detail description of the
sheet features is contained in section 4.

Each one of the six registers has shaded cells containing the current hex
values in the registers. The number on the left adjoining cell is the decimal
equivalent. The Gates are all off, as shown.

The processor sheet is only updated by clicking any of the seven buttons on
the left: Clock, Reset, Load Memory, Clear Memory, Hex, Decimal,
Disassemble. All cells are locked against direct update.

The sheet tabs at the bottom of the sheet provide access to the other
emulator features.

8

Figure 1 Processor sheet

 Clock - Clicking the Clock button advances the processor by one
machine cycle. The MC count below the button indicates the number of
cycles executed since a Reset. In Figure 1 the processor is in the reset
state.

 Reset - This button resets the processor to the state seen in Figure 1
but does not affect the content of memory. The MC count is set to zero.

 Load Memory - The Load Memory button loads the memory with the
Machine Code generated by the Assembler sheet, described in section
2.3.

 Clear Memory - This button clears the memory to zeroes as shown in
Figure 1.

 Hex - The memory content is displayed as hex characters and is
indicated in the top row of Memory.

 Decimal - The memory content is displayed as decimal characters and
is indicated in the top row of Memory.

 Disassemble - The memory content is displayed disassembled into
instruction mnemonics and operand data over the length of the
program and is indicated in the top row of Memory. Data are shown in
hex.

9

2.3 Assembler

Figure 2 Assembler sheet

The Assembler sheet Figure 2 consists of input instructions and output
Machine Code values for the instructions. The sheet is only updated by the
button “Assemble”. All cells are locked against direct update.

The Assemble button copies the content of the codes written in the Source
sheet (section 2.4) into the corresponding locations in the Assembler sheet
where they are assembled into the output Machine Code values (decimal and
hex are shown). The Assembler creates all the Machine Code values from the
instructions and labels on the Source sheet. In Figure 2 the instructions are
those given by the first example shown in Book 1 (A Basic Operation).

The Output values are copied into the processor memory by the Load
Program button on the Processor sheet.

The assembled Machine Code values are also shown in hex in the two
columns headed “Code”. The address of the first (and possibly only) byte is
shown in the column headed “Address”. This part of the display can be useful
when navigating around the stored values and observing the register displays
in the simulator Book 3.

The values assigned to the labels are shown in decimal and hex in the “Label
Table” to the right of the sheet. The syntax of the labels, instructions and
operands is described in section 5.

The button “Create Firmware” creates a binary file of 256 bytes containing the
assembled Machine Code values. The file is always named “Firmware.bin”
and can be renamed directly (e.g. through Explorer) as required. An existing
Firmware.bin file in the folder is replaced. The file is used by the simulator
(Book 3) to load Machine Code values into the simulated hardware electronic
circuit. The file is created in one of the following folders:

 For Excel: the “Default file location” set in the “General” tab of the
spreadsheet options

 For Calc: in the same folder as the emulator.

10

2.4 Source

Figure 3 Source sheet

Instruction Codes can be written directly into the open (white) cells of the
Source sheet Figure 3. Full instructions on the rules governing the formatting
and writing of codes are given in section 5.

The button “Clear Code” is a short-cut for clearing all the cells to blank.

2.5 ALU Acc

The ALU and Accumulator processing features described in Book 1 are all
calculated on this sheet. The sheet is divided into two parts: ALU (upper) and
Accumulator (lower). The relevant part is highlighted only when a
corresponding instruction is processed.

Further detail on the sheet is given in section 6.

11

2.6 Program Store

Figure 4 Program Store sheet

The Program Store sheet Figure 4 is simply a repository for saved programs.
A title may be added as shown. The titles shown in the figure correspond to
the section numbers in Book (B) and Part (P) for the examples shown. When
a saved program is to be assembled and loaded into the processor, it is
copied (copy and paste) from the store into the corresponding location in
Source.

2.7 Other Sheets

 Instruction Set - This sheet defines the Instruction Set for the simple
processor.

 Micro Code - This sheet contains the documented micro codes for the
simple processor.

 Gates - This sheet defines the Gate operation for the simple processor
emulator.

Each of these sheets is further described in Part 2 of this Book.

12

3 User Guide

This section provides sufficient guidance to allow operation of the emulator as
a demonstration of the simple process flows described in Book 1 Part 1.

In Book 1 Part 1 section 4.1 the simple idea of loading the accumulator with
data is introduced. The process flow can be demonstrated on the emulator as
follows.

 With the emulator open go to the Source sheet and ensure the cells for
user programs are empty. If they are not click the “Clear Code” button.

 If at any time the spreadsheet provides a warning that cells containing
data are being overwritten, select the check-box to block the warning
since this is normal operation and continue.

 Go to the Program Store sheet. Under “4.1 A Basic Operation” select
all the cells containing content and copy them. Figure 5.

Figure 5 Cells selected in the Program Store

 Go to the Source sheet and paste the cells in the corresponding
positions. Figure 6. It is important that the same columns (i.e. Labels,
Ins, Op) are used as the Program Store. (Alternatively, the text may be
typed directly, but note the column position of the text).

Figure 6 Cells pasted into Source sheet

 Go to the Assembler sheet. Click the “Assemble” button. The code will
appear on the Assembler sheet.

13

 Go to the Processor sheet. Click the “Load Memory” button. The
assembled code is loaded into the processor memory. Use any of the
“Hex”, “Decimal” and “Disassemble” buttons to view the code in
memory. These buttons can be used at any time.

 Click the “Reset” button. The processor is now ready to run the code.

Each click of the “Clock” button runs another machine cycle. The processor is
updated in the manner described in Book 1 except the emulator increments
the Program Counter (where required) at the beginning of the next cycle so
that the Program Counter can be fully observed in the current cycle.

Any of the programs in the Program Store can be copied into Source,
assembled and run in the same way.

Instructions for writing programs are given in section 5.

14

4 Processor Sheet Description

The Processor sheet in the reset state is shown in Figure 7.

Figure 7 Reset state showing demonstration program disassembled

Notable features shown in Figure 7 are as follows.

 The count “MC” beneath the Clock button states the number of
Machine Cycles performed i.e. the number of times Clock has been
clicked since the reset state.

 Each gate A to H has the text “off” associated. This indicates the Gate
is closed. When any Gate except B or C is opened during Fetch or
Execute cycles the text changes to “on”. For Gate B the text changes
to “in” and for Gate C to “out”.

 The darker grey bars between registers and memory represent the
paths by which byte information passes between them. The grey
shading means no information is passing over the path.

 The path from the Address Bus Register to Memory is the address bus.
The path from Gates B, C, E, F, G to Memory is the data bus. When
there is data on the data bus the indicator “Bus on” changes to “Y”.

 The hexadecimal content of the Address Bus Register is reflected in
Memory in the byte “ADDRESS” when the address bus is on. The
value decodes the row and column addresses in Memory (in grey
shading) and hence the addressed byte (in black shading).

 The data bus content into Memory is shown. The content is in the
same form as memory as selected by the Hex, Decimal and
Disassemble buttons. The direction of the memory byte is also
indicated by the indicator “DATA READ” for a memory read (Figure 8),

15

“DATA WRITE” for a memory write, or blank (Figure 7) if memory is not
accessed (i.e. the data bus is not on).

Figure 8 shows the paths for a typical Fetch cycle. Memory is shown in the
“Disassemble” view.

Figure 8 Fetch LDI instruction

Notable features are as follows.

 Figure 8 shows the emulator demonstrating the Fetch cycle for an
instruction. The Program Counter contains the address of the
instruction loaded into the Instruction Register. The simple processor
described in Book 1 and simulated in Book 3 increments the Program
Counter at the end of the Fetch cycle. For clarity, when using the
Program Counter the emulator always shows the incremented Program
Counter at the beginning of the next cycle.

 Gates I and F are “on” and black shading with white chevrons indicates
the direction of flow of information. The source data is copied into the
destination.

 The instruction is copied into the Instruction Register. The emulator
shows the instruction in its byte form (grey shading in hexadecimal)
and the decimal equivalent to the left. The cells below indicate the
cycle type (fetch or execute), the instruction mnemonic (LDI in the
figure), the instruction name, whether the instruction includes an
operand, the number of machine cycles required to complete the
instruction and the count of machine cycles completed (Cycle no.).

16

Figure 9 shows the emulator executing an internal operation. The instruction
sets the Carry flag.

Figure 9 Execute SEC Instruction

 The memory remains addressed by the Address Bus Register but the
data bus is not on because the instruction execution is an internal
operation.

Figure 10 shows an ALU instruction loaded into the Instruction Register.

Figure 10 Fetch SBI

 The instruction concerns the ALU and the type is indicated by text
appearing above the ALU as ADD, SUB, AND, OR or XOR as
appropriate.

 The ALU register contains two inputs from the Accumulator and
Memory (through Gate E) and one output linked to the Accumulator
through Gate A. Each can be identified by the connecting data path.

17

Figure 11 shows the execution of a branch instruction where the condition
enables Gate H to open.

Figure 11 Execute BNZ branch condition met

 Gate H control is shown by the light grey path connecting the flags to
the Gate.

 The processing is an internal operation and the data bus is not on.

 When a branch instruction is loaded into the Instruction Register the
instruction mnemonic is copied into the cell above the path between
“Accumulator” and “ALU” as shown in Figure 11.

 The result of the condition is given in the cell below the instruction
within the grey path. Gate H is “on” if the condition is “ENABLE” (Figure
11) and is “off” if “DISABLE” (not shown).

 The black chevrons indicate the flag involved and only progress to
Gate H if the path is through “ENABLE”.

18

5 Writing Instruction Codes

This section contains a guide to writing simple processor programs. It is
important to follow the guidance or the program may not build as expected,
although it is possible to make program mistakes, of course.

Programs are best written on the Source sheet. When the program performs
the task as expected then it can be copied into a blank repository in the
Program Store if it is to be kept. To keep the program the emulator needs to
be saved before it is closed. See section 1.4.

The Source sheet consists of three columns: Label (Label), Instruction (Ins),
Operand (Op) as shown in Figure 12, which includes an example program.

Figure 12 Source sheet column headings and example program

5.1 Labels

The left column is reserved for labels. Only labels are expected in this column.

A label is a reference to one of three things:
 A constant defining the value of an operand
 A specific Instruction Code address
 A memory byte or byte list address

If the Instruction column contains the characters “EQ” then the label is a
constant. The value is given in the Operand column as a decimal number. In
general, wherever a constant appears in the Operand column in a program, a
label should be used rather than using the number value directly. This makes
it easier to change the value of a constant between program runs or if the
need arises because only the value assigned to the constant by “EQ” needs
to be changed. Figure 12 contains examples.

19

Sometimes the operand value is intrinsically fixed, such as a decrement. The
value can be fixed by using a “#” sign preceding the hex value of the constant.
Figure 12 contains an example on the subtract instruction. The “#” may be
used during constant definition if the constant is provided in hex. Note that a
decimal number in the Operand column is a label not a number, except where
“EQ” is used in Instruction.

The program may contain branch instructions. In Machine Code the operand
of the branch instruction requires the actual value of the memory location to
which the program branches. The programmer does not know in advance the
actual value. However, the instruction to branch to is known and its position in
memory can be assigned a label. The written branch instruction operand uses
the label and the assembler calculates the values when assembling the
Machine Code. Therefore, the actual values are abstracted and the
programmer does not need to assign the value directly. Generally, it is not
important to know the actual byte address of the memory, just a reference that
uniquely locates it in memory. Figure 12 contains an example (“loop”) of a
branch label.

The program may make use of memory locations to load and store data. If the
programmer requires a specific memory address to be used, the memory byte
value can be assigned to a label as a constant and the constant used in the
program. Alternatively, the address can be specified explicitly in the operand
through the use of a “#” sign preceding the hex value of the address.

If the programmer does not require specific memory locations, then at the end
of the program the remaining memory can be assigned using the “&”
character in the Instruction column for each byte. Figure 12 contains an
example on the store instruction (“here”).

Duplicate labels are not detected by the Assembler and no error is reported.
The resulting operands will be incorrect for all instances. Labels must not be
duplicated.

5.2 Instructions

The centre column is reserved for instructions. Only instructions are expected
in this column.

An instruction is one of three things:
 An instruction mnemonic
 An equate for fixing a constant value to a label
 A reference reserving a memory byte for data

The Instruction column must be formatted in one of the ways described here.

The column cell contains an Instruction mnemonic as defined for the simple
processor. Instruction mnemonics are usually written using upper case
characters but the case is not important to the Assembler. If the instruction is

20

not recognised the Assembler shows an error at the line where the problem
occurs. For example see Figure 13. The unknown instruction is assigned the
value zero (i.e. HLT).

Figure 13 Example where Assembler does not recognise mnemonic

The special characters “EQ” which equates a label to a constant value. Using
the label in an instruction operand assigns the value to that operand. The
rules for EQ are as follows:

 A missing label will result in the assembler ignoring the line.
 A missing or non-numeric operand (except preceded with “#”) will result

in the value zero being assigned. The Label Table may show an error.
 A number is treated as a decimal number.
 Placing all the EQ statements at the beginning is generally convenient

for the programmer but is not required by the Assembler.
 An entry preceded with “#” is treated as a hex number input. The hex

number should consist of two hexadecimal characters. If the assembler
detects that the hex number is incorrectly formatted then the value zero
is assigned and the Assembler sheet indicates an error next to the
operand in the Output columns. The entry under “Code” consists of a
series of “#” characters. See example in Figure 14.

Figure 14 Example of incorrectly formatted hex number

The special character “&” which reserves the next byte of memory for data
storage. A label value or hex data entry in the Operand column is assigned to
the byte. No entry in Operand assigns the value zero. An entry in the Label
column may uniquely identify the byte or a list of bytes consisting of the
labelled “&” and each following line entry “&” with no entry in the
corresponding Label column. The “&” characters should only be used
following all instruction mnemonics (i.e. program completion) otherwise the
“Disassemble” view on the processor does not function properly.

21

5.3 Operands

The right column is reserved for operands. Only operands are expected in this
column.

The Operand column entry is either a label, number, blank, or consists of a “#”
character followed by a two-digit hex value. Decimal numbers appearing in
the Operand column are regarded as labels and not numbers, except when
“EQ” is used during constant definition. The usage of “EQ” and “#” is as
defined previously.

Instructions which require an operand should have an entry in the Operand
column, otherwise an error is shown. Conversely, if the instruction has no
operand the Operand entry should be left blank otherwise an error is shown.
(In all cases, the Assembler may assign a value to an entry).

The label refers to a defined memory space, constant or address of a
referenced instruction, as appropriate to the context in which the label is
defined. If the label is not recognised the value zero is assigned without a
warning except the label will be missing from the Label Table.

An entry in Operand with no entry in Instruction is ignored by the Assembler.

The Assembler always produces some “Output” regardless of any errors. It is
left to the programmer to identify and correct errors.

Blank lines are ignored by the Assembler and may be used to separate code
lines if desired. An example occurs in Figure 12.

Writing programs using the mnemonics of the processor and a symbolic
convention (as demonstrated here) is often referred to as programming in an
“Assembler Language” or simply “Assembler”. Further examples are included
in Book 3.

22

6 ALU Acc Sheet

The processor manipulates data through the ALU and Accumulator functions
described in Book 1 Part 1. The emulator performs the calculations through
the ALU Acc sheet and the computation can be viewed directly by selecting
the sheet during the processing of a corresponding instruction. Note that this
section includes some descriptions covered by Book 1 Part 2.

The ALU and Accumulator processing instructions are the arithmetic, logic,
shift and rotate instructions. The ALU Acc sheet supports the instructions by
continually updating its calculations for all the ALU and Accumulator
processing functions. If the Instruction Register is not processing one of the
ALU Acc instructions, then the ALU Acc sheet does not supply any results of
its calculations to the Processor. This is indicated by shading the screen as
shown in Figure 15.

Figure 15 ALU Acc sheet not active

The sheet is divided into two sections: ALU calculations and Accumulator
calculations. When the Instruction Register contains an instruction of either
type the relevant part of the sheet shows the calculations performed for all
instructions of the type. Within the section shown a particular set of
calculations are highlighted which show the calculations for the actual
instruction. It is the result of the highlighted calculations which appears as the
sheet output which feed back to the Processor.

The sheet is highlighted when the instruction is fetched into the Instruction
Register. The relevant data for the required calculations is only available

23

when the instruction is executed. Therefore, the ALU Acc output is only
relevant during the execute cycle of the instruction.

Example screens are as follows.

6.1 ALU

6.1.1 Addition

Figure 16 ALU Acc sheet ALU active highlighting ADD

The ALU part of the sheet is highlighted. Within this part, all calculations
relating to ALU functions are performed. The instruction is identified at the top
of the sheet as “ADD” and only these calculations are relevant for addition
and are further highlighted.

The “Accumulator (A)” and “Memory (M)” bytes are broken into the binary bits
shown in the grids under the identifiers “1” to “8”. “1” is the most-significant bit
on the sheet.

The “carry fwd (cf)” grid shows any Carry forwarded during the bit additions.
Bit 8 of the grid is marked as “carry in” and is set to the value forwarded from
the Processor sheet at the start of the calculation.

The grids “sum” and “carry” are derived by adding the A and M bits along with
“carry fwd (cf)” bit as shown in Figure 17.

24

A M cf Sum Carry

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Inputs Outputs

Figure 17 Addition of bits of byte

Processing proceeds by placing the Output Carry bit of position 8 into position
7 of the “Carry fwd (cf)” grid. The sequence is repeated for each bit down to
position 1 with each individual carry rippling through the calculation. If the final
addition (bit position 1) has the Carry out bit set, then the ALU Carry out bit is
set. The Carry flag in the Processor is set to the value of ALU Carry out.

Note that the Figure 17 is the “Full Adder” described in Book 1 Part 2.

6.1.2 Subtraction

Figure 18 ALU Acc sheet ALU active highlighting SUB

Figure 18 shows the highlight for subtraction. “Accumulator (A)” and “Memory
(M)” bytes are shown along with calculations in the highlighted area for “SUB”.

25

The “Memory byte (M)” is ones-complemented in the grid “1s comp. M (1cM)”
i.e. each bit is inverted. The grids “sum” and “carry” show the result of adding
the bits in “A”, “1cM” and “cf” in the same procedure as for addition.

A full description of subtraction is provided in Book 1 Part 2.

6.1.3 Logic
The screens highlighting each of the logical operators AND, OR and XOR are
shown in the following figures.

Figure 19 ALU Acc sheet for AND

26

Figure 20 ALU Acc sheet for OR

Figure 21 ALU Acc sheet for XOR

27

6.2 Accumulator

When the Instruction Register contains any of the Accumulator (shift/rotate)
instructions the Accumulator section of the sheet shows the calculations for
each of the four instructions. The specific instruction is highlighted. The shift
and rotate sheets for each instruction appear as follows.

Figure 22 ALU Acc sheet for SHL

Figure 23 ALU Acc sheet for SHR

28

Figure 24 ALU Acc sheet for ROL

Figure 25 ALU Acc sheet for ROR

29

	1 Installation
	1.1 Macros
	1.2 Notes for Excel
	1.2.1 Version
	1.2.2 Setting the Trusted Location
	1.2.3 Setting the Trust Centre
	1.2.4 Analysis ToolPak
	1.2.5 Program Close

	1.3 Notes for Calc
	1.3.1 Version
	1.3.2 Setting the Trusted Location
	1.3.3 Setting the Trust Centre
	1.3.4 Using the Calc Emulator for the First Time
	1.3.5 Program Close

	1.4 Creating versions, keeping back-ups
	1.5 Document protection (sheets)

	2 Overview
	2.1 Introduction
	2.2 Main View – Processor Sheet
	2.3 Assembler
	2.4 Source
	2.5 ALU Acc
	2.6 Program Store
	2.7 Other Sheets

	3 User Guide
	4 Processor Sheet Description
	5 Writing Instruction Codes
	5.1 Labels
	5.2 Instructions
	5.3 Operands

	6 ALU Acc Sheet
	6.1 ALU
	6.1.1 Addition
	6.1.2 Subtraction
	6.1.3 Logic

	6.2 Accumulator

