
DIGITAL MAGIC EXPOSED

Book 1 – A Simple Digital Processor

Any sufficiently advanced technology is indistinguishable from magic – Arthur
C Clarke’s Third Law

1

I. Forward

Digital devices are in use everywhere by most people. Typically included are
smartphones, lap-top computers, tablets, ebooks, home appliances etc. Some
users may be curious about how these actually work. The three books in this
series are intended to provide an insight into the digital processing which
underpins their inner working.

At the heart of all the devices is a “processor”, a machine which takes in
information and performs activities according to a set of instructions. The
result can appear sophisticated and complex but is actually as a consequence
of doing very simple things very quickly.

Naturally, the subject matter can appear a little dry since it involves a lot of
description of technical processes. These are laid out simply and clearly and
should not involve long periods of concentration. The books are aimed at the
curious and no initial expertise is required. Each book consists of two parts
with more complex features omitted from the first part of each book and the
second parts may be skipped.

The subject is described in this part by introducing a machine which can
perform the essential functions of a processor. The machine is referred to as
the “simple processor”. The description uses only very easy arithmetic
principles and includes a set of instructions controlling the simple processor.

Book 2 describes an emulation of the simple processor. The emulator
provides an animation to demonstrate the description in this part. The
emulator also provides the means to write programs, assemble them and
produce executable program code for the simulator described in Book 3.

Book 3 describes a simulation of an electronic design of the simple processor.
The simulator can run the programs written using the instructions described in
this part and produced by the emulator in Book 2.

The three books of the series can be read consecutively or concurrently with
this part. A good approach is to read all the Part 1s before the Part 2s. If the
Part 2s are skipped it is recommended that the “Concluding Remarks” in Book
1 Part 2 is read to complete the series.

 Book 1 (this book). The book is divided into two parts:
o Part 1 – The concept is introduced in plain English and is

intended to be understandable to anyone.
o Part 2 – contains additional descriptions of logic, arithmetic, the

simple processor control system and examples of more
complex processor features omitted from this part.

 Book 2 describes a pc-based emulation of the processor described in
this part. The emulator demonstrates the processes occurring step-by-

2

step as instructions are executed and can produce loadable programs
for the simulator described in Book 3. The emulator can accompany
this part to aid clarity to the text. Book 2 contains two parts:

o Part 1 – describes installation of the emulator and its operation.
o Part 2 – provides some detail on the construction of the

emulator to aid its further development.

 Book 3 describes a pc-based electronic circuit simulation of the
processor described in this part. The electronic circuit tool running the
simulator is freeware available online from enthusiasts and instructions
are provided for access, loading and operating the tool. The processor
simulator demonstrates operation step-by-step or as a running
program. Book 3 consists of two parts:

o Part 1 – describes the installation of the tool and the loading
and operating of the processor circuit simulator.

o Part 2 – provides a full description of the simulator electronic
circuits.

Finally, an acknowledgement to an out-of-date and out-of-print book is in
order since it first fuelled the author’s interest in digital processing:

Electronic Computers – Teach Yourself Books 1962 F. L. Westwater

This book appears dated today. It is true that much of the content relates to a
bygone age. However, the original edition appeared only 14 years after the
SSEM (“Baby”) – the world’s first stored program computer. The book is short
and succinctly covers the subject matter. It was understandable (with some
concentration) and inspiring to a 14 year-old.

3

II. Terms

Many technical terms enter into general use in everyday language. To avoid
possible confusion or misunderstanding some of the terms used in the books
are defined here.

Software – this is written text which is meaningful to a software engineer but
not to a computer processor. However, through a tool called a “compiler”,
software generates Machine Codes which are understandable to a processor.
Software is not of concern here. Applications or “Apps” are built from
software.

Code – this is sometimes used on its own as a shortened form of “Software
Code” i.e. software. In these books the word “code” is always preceded by a
defining term or context and does not refer to software.

Instruction Code, Instruction Mnemonics, Instructions - this is written text
which has a direct conversion (i.e. one to one) into the binary Machine Codes
meaningful to the computer processor. The text is more readable to a person
than a binary code. The Instruction Code consists of “instruction mnemonics”
and any associated data which facilitate specific actions in the processor.
Often the term instruction mnemonics is shortened to “instruction”.

Machine Code – The numerical value in binary of the instruction mnemonics
and data incorporated into and meaningful to the processor machine. This is
sometimes known as “firmware”.

It takes very many instructions to complete even simple tasks and it would be
very tedious indeed to write Instruction Code to complete the required tasks in
real life. Software provides an abstract development environment (i.e. makes
the inner working of the machine unimportant) and generates very many
Machine Code values from a small amount of written text. Therefore, software
is much more efficient in development time and accuracy in coding tasks.
Instruction Code is introduced in these books, but not software.

4

Part 1 – The Simple Computer Processor

1 Introduction..6
2 Electrical Representation of Data..8
3 Registers and Memory..11

3.1 Address Bus Register...11
3.2 Accumulator and ALU...12
3.3 Instruction Register...14
3.4 Memory Access Registers..15

4 Simple Processor..16
4.1 A Basic Operation...17
4.2 Halt Instruction..25

5 Arithmetic Logic Unit..26
5.1 Addition...26
5.2 Subtraction..27
5.3 Logical Operators..27
5.4 Instruction Code..28
5.5 ALU Layout..29

6 Accumulator Operations..30
6.1 Shifting..30
6.2 Rotating...31
6.3 Instruction Code..32

7 Branching and Programming...33
7.1 A Simple Branch..34
7.2 A Note On Programming...44

8 Concluding Remarks...45
A. Appendix: Binary Numbers..46
B. Appendix: Hexadecimal Numbers...48
C. Appendix: Instruction Set for the Simple Processor................................49

5

1 Introduction

The following describes a simple computing system to give an insight into
what is occurring in much larger machines, which only have more parts and
additional features. However, essentially, the larger machines operate in a
very similar manner. There are very many different forms the system could
take. The form chosen for these books is intended to be simple to understand.

The heart of the computing system in the pc, mobile etc is the processor. This
is sometimes called a microprocessor due to its small scale compared with
physically larger computers in the past. The essential property of the
processor is to change input data into output data (Figure 1). What input data,
how it is to be changed and where the output is to be placed are all
determined by the instructions controlling the processor. The flexibility of the
machine is characterised by the ability to alter the instructions, thereby
altering the processing.

Input

Process

Output

Instructions

Figure 1 Process changing input to output controlled by instructions

For example, the process flow determined by the instructions could be like the
following:

Take the number from location “A”
Subtract the number from location “B”
Place the result in location “C”.

The locations referred to are regarded as computer “memory”.

The true power of the computer processor is its ability to perform different
process flows depending upon the data. For example:

Take the number from location “A”
Subtract the number from location “B”
If the answer is less than zero, then take the number from location “D”
Place the result in location “C”.

The number placed in “C” is either: the difference between “A” and “B” (if “A”
is greater than or equal to “B”); or is “D” (if “B” is greater than “A”). Note that
the part of the instruction following the “then” is skipped if the condition is false

6

(that is, the answer is not less than zero). The altered process flow has the
appearance of the processor making decisions.

Therefore, the computer must consist of
 a means to hold data,
 a means to receive instructions,
 to look at and process data held in specific locations,
 to alter the data in specific ways,
 to alter the process flow based upon data,
 to place data back into specific locations.

Before outlining how the processor achieves all this the means by which data
are represented is briefly described.

7

2 Electrical Representation of Data

Computers and electronic memory devices hold information in the most basic
form imaginable. That is, the data consists of “bits” of information where a “bit”
is held in a device which has only two states: “On” or “Off”. So a bit has only
two possible values.

The bits are collected into groups of eight called “bytes”. The eight bits
together (i.e. the byte) can contain any combination of “on” and “off” states in
any of the eight bits. The total number of states for the byte is 2 x 2 x 2 x 2 x 2
x 2 x 2 x 2 = 256 different states. Figure 2 shows four examples:

Off Off On On Off On Off On

Off On On Off Off On On On

On Off On On On Off Off Off

Off Off Off On Off Off Off On

Figure 2 Example Byte states

The two states are more usually referred to by the numbers “1” and “0”. So
the examples in Figure 2 look like Figure 3:

0 0 1 1 0 1 0 1

0 1 1 0 0 1 1 1

1 0 1 1 1 0 0 0

0 0 0 1 0 0 0 1

Figure 3 Here an “Off” bit is 0 and “On” bit is 1

By convention, the byte consists of bits of increasing “significance” from the
“least significant” to the “most significant”, in order along the byte. The least
significant is regarded as bit b0 and most significant as bit b7, with the other
bits b1 to b6 fitting in between.

The byte can be considered to be a number. All numbers can be represented
using 1s and 0s in this way and is referred to as the binary system of
numbers. Appendix A provides an introduction to binary numbers. Each
higher significant bit along the byte regarded as a number is a power of 2
greater than the previous bit. The four examples above, as numbers, have the
decimal values shown in Figure 4.

8

Significance: Most Least Byte
Bit Number: b7 b6 b5 b4 b3 b2 b1 b0 Value
Bit Value: 128 64 32 16 8 4 2 1

0 0 1 1 0 1 0 1 53

0 1 1 0 0 1 1 1 103

1 0 1 1 1 0 0 0 184

0 0 0 1 0 0 0 1 17

Figure 4 Bytes as numbers

The Byte Value is found by adding the Bit Value for each of the 1 bits
together.

The byte does not necessarily have to be a number but can be considered to
be a code. The bytes are often arranged according to some conventions to
represent something understandable to a person or machine. For example,
sometimes it is regarded as an encoding of characters useful for printing text.
Values for each byte include numbers, letters, punctuation, and control
characters for operating printers (for example line feed and page feed).
Examples of encoding systems include ASCII and EBCDIC which can be
found in Wikipedia.

The eight-bit byte is used in many smaller computing systems and is used in
the description of a simple processor system in the following. Larger
machines that have evolved over the years are effectively multiple-byte
machines (i.e. multiples of 8 bits). This is a generalisation and other examples
of bit-widths that have been used include one-bit, four-bit and 12-bit
machines.

It is worth noting that writing out binary representations of numbers and
characters is tedious, both for writing and reading. Therefore, the bits are
arranged into groups of four and represented by a single character as shown
in Table 1. The equivalent numeric decimal value is also shown. So a byte
contains two such groups.

9

Hex Decimal

0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 2 2
0 0 1 1 3 3
0 1 0 0 4 4
0 1 0 1 5 5
0 1 1 0 6 6
0 1 1 1 7 7
1 0 0 0 8 8
1 0 0 1 9 9
1 0 1 0 A 10
1 0 1 1 B 11
1 1 0 0 C 12
1 1 0 1 D 13
1 1 1 0 E 14
1 1 1 1 F 15

Binary

Table 1 Binary and Hex equivalents with Decimal value

The characters form the basis of a 16-digit number system (0 to F) called
“hexadecimal”. Like binary, a whole arithmetic can be studied which uses
hexadecimal and some very simple examples will occur later. This is not
required for a basic understanding of the machine. Hexadecimal (or Hex for
short) is a convenient representation of the binary bits and will be used in
most of the following descriptions.

Figure 5 shows a few examples of byte values represented by hex. The
decimal value can be found from the binary as seen before or by the hex
conversion demonstrated in Appendix B.

Hex Decimal

0 1 0 0 1 0 1 1 4B 75

1 1 0 0 1 1 0 0 CC 204

0 0 0 0 0 1 0 1 05 5

Byte

Figure 5 Bytes shown as Hex values

Finally, useful information such as texts, documents, spreadsheets etc consist
of very many byte characters arranged in a meaningful format, both in terms
of human understanding and in a way the computer is able to perform
processing. When altering such information, essentially the machine achieves
the required output on the input information by processing one byte at a time
under the control of the processor instructions.

10

3 Registers and Memory

To summarise the previous section, bits are held in groups of eight known as
bytes. Each physical byte in the computer system is contained in an electronic
device holding the values of eight bits.

The bytes to be processed which make-up the information must be held so as
to be directly accessible by the processor. This is the computer “memory”.
The maximum memory size is determined by the capability of the processor to
access directly any particular byte. This is not the same as data storage,
which in principle could be unlimited but requires data to be retrieved into
memory for processing. For example, a “hard-disk drive” in a lap-top is a data
storage device.

The processor needs to access memory and operate on data it receives. To
do this, the processor contains a number of electronic devices holding bytes
which perform specific functions. These are known as “registers”. For the
simple processor described here the registers are shown in Figure 6 and
introduced in the following.

PROCESSOR

Instruction Register Address Bus Register

Accumulator Program Counter

Aithmetic Logic Unit Address Register

Figure 6 The Registers used in the Simple Processor

3.1 Address Bus Register

Each memory byte’s location must be uniquely accessible. The location is
known as the byte “address”. The processor accesses a byte in memory
through a register called the “Address Bus Register”. The output value of the
Address Bus Register is decoded by an electronic circuit to select a specific
memory byte from all memory bytes.

In the example described here the register consists of a single byte i.e. eight
bits. This means that 256 bytes of memory is addressable (since a single byte
has 256 different states). In practice, this is rather small but is sufficient for the
purpose here. Although seldom used today, practical microprocessors using
8-bit data technology use 16-bit Address Bus Registers which can therefore
address 256 x 256 = 65536 bytes of memory. Adding each extra bit to the
address bus register doubles the memory space.

11

The Address Bus Register is eight bits and any one of 256 bytes of memory
can be addressed. The electronic circuits decode the output of the register to
access a particular byte in a manner which can be visualised in Figure 7.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

Low 4 bits 0110

0111

Example: 1 1 0 0 1 0 0 1 1000

1001

High 4 bits 1010

1011

1100

1101

1110

1111

Address Bus Register

Figure 7 Memory - binary address

The grid represents all 256 bytes of memory. Each 4-bit group of the Address
Bus Register decodes a particular row and column in the grid and the
intersection of the two identifies the specific memory byte. In Figure 7 the
binary address 11001001 identifies the specific location of the memory byte.
The address is more readable in the hexadecimal form “C9” as shown in
Figure 8.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
1
2
3
4
5

Low 4 bits 6
7

Example: C 9 8
9

High 4 bits A
B
C
D
E
F

Address Bus Register

Figure 8 Memory - Hexadecimal Address

3.2 Accumulator and ALU

Information is processed one byte at a time in the processor. (Modern
commercial processors are typically 32 or 64 bit machines and therefore
handle multiple bytes at one time). The processor reads a byte, does
something with it and places the result somewhere. A register called the
“Accumulator” holds the data whilst it is in the processor. Some specific
operations can occur within the Accumulator and these are described in
section 6.

12

To visualise how the Accumulator, Address Bus Register and memory
operate together the following process is considered.

Take the number from location “A”
Subtract the number from location “B”
Place the result in location “C”.

To achieve this, the processor requires something that can perform the
arithmetic. This component is referred to as the “Arithmetic Logic Unit”. The
Arithmetic Logic Unit (ALU) is fully described in section 5. Essentially, the ALU
reads in the content of the Accumulator and a byte in memory and calculates
a result. So the processor looks something like Figure 9:

Address Bus Register Address

Control Accumulator

Aithmetic Logic Unit
 PROCESSOR MEMORY

Data

Figure 9 Rudimentary Processor

The value held in the Address Bus Register identifies a specific byte in
Memory. Data may be read from or written to that location. Therefore,
Memory must also be instructed whether the operation is a “read” or “write”
data. This is not shown in the figure. It is operated by the box “Control”.

For the rudimentary processor Figure 9, Control needs to provide the
following functionality:

 Data may be read from and written to Memory by the Accumulator.
 The ALU may read data from and write data to the Accumulator (all

results pass to the Accumulator).
 Data may be read from Memory by the ALU. The ALU does not need to

write to Memory (shown in the figure as separate data lines from
Memory although in an electronic circuit this is unnecessary).

Understanding what Control needs to do is achieved by breaking down the
steps of the process into simpler steps. This exercise is a very simple form of
analysis undertaken by engineers who develop programs running on a
computer. The break down is shown in Table 2.

13

Instruction Steps
Take the number from
location “A”

 Put the address “A” in the Address Bus
Register.

 Read the Memory placing the data into
the Accumulator.

Subtract the number from
location “B”

 Put the address “B” in the Address Bus
Register.

 Set the Arithmetic Logic Unit to
“Subtract”.

 Read data from the Accumulator and
Memory into the Arithmetic Logic Unit
and subtract them.

 Write the result from the Arithmetic Logic
Unit into the Accumulator.

Place the answer in
location “C”.

 Put the address “C” in the Address Bus
Register.

 Write the data in the Accumulator into the
Memory.

Table 2 Instructions broken into Steps

Each Instruction represents the simplest level of coding needed to instruct
the processor as to what is to be achieved. However, inside the processor
there is a further level of breakdown of the Instruction into individual Steps
which control precisely what is to happen inside the machine. These steps are
referred to as the “microcode” by processor designers.

Converting instructions into steps through the microcode is the function of
Control. What Control does is determined by loading the instructions into the
“Instruction Register”.

3.3 Instruction Register

Control determines what the processor machine does next. Of course, this is
under the command of the instructions given to it. So what are the instructions
and where do these come from?

The instructions are byte codes (called Machine Code) which invoke specific
steps (i.e. sequences of microcode) within the processor machine. Control
contains a register, the Instruction Register (8 bits in the example here), into
which the instructions are placed, one at a time, and from which they are
processed. When the processing of an instruction is finished, the next
instruction can be loaded.

The instructions form a fixed set (referred to as the “Instruction Set”) for a
given processor design. The simple processor described here has an
instruction set which is effective but would not claim to be an efficient

14

computing machine. However, even a simple instruction set is capable of
complex calculation and all software eventually creates instructions consisting
of Instruction Codes for a particular processor’s instruction set. The full
instruction set for the simple processor is described in Appendix C.

The instructions to complete a specific task are also contained in the Memory.
This is the computer program. Computers (especially simple ones as
described here) can be considered to be sequential machines. That is, they
follow a sequence of instructions one at a time from the start and continue
until instructed to stop. If the instructions form a processing loop then it may
never stop.

The instructions are loaded and processed one after another. The loading is
referred to as a “Fetch” and the processing as “Execute”. These form an
alternating sequence as can be seen in Figure 10.

Fetch Execute Fetch Execute Fetch Execute Fetch …

Figure 10 Fetch/Execute sequence

Therefore, there is an underlying cycle running which drives the machine
through the sequence. The cycle is known as the “Machine Cycle” and this in
turn is driven by an electronic ticking “clock”. The speed of the clock (i.e. the
number of cycles per second) determines how fast the processor is in running
programs.

3.4 Memory Access Registers

The processor must know where to start loading instructions from first. This
can be achieved in a variety of ways, such as by arranging the electronic
circuits to fetch a memory address from a specific location, or simply starting
from a specific address. The simple processor here always starts the
instruction load from memory location 00 (hex).

The processor must know the address of the next instruction to load from
Memory via the Address Bus Register. This is achieved by using another
register called the “Program Counter” which holds the address of the
instruction memory location. After an instruction is loaded by placing the
address held in the Program Counter into the Address Bus Register, the
Program Counter is incremented to point to the next location in memory.

Furthermore, the processor must know where in memory to read and write
data. Another register “Address Register” holds the address which the
processor accesses data in memory via the Address Bus Register. Data
access can occur when the content of the Address Register is placed in the
Address Bus Register.

Together the registers described form the basis of the simple processor.

15

4 Simple Processor

B I

C
D A

E G J

F

PROCESSOR

MEMORY Address

Instruction Register Address Bus Register

Data

Accumulator Program Counter

Aithmetic Logic Unit Address Register

CONTROL

Figure 11 Simple Processor

Figure 11 shows the registers making up the processor described here. On
power-up or reset the electronic circuits set the value in Program Counter to
00 (hex). The values in the other registers are set according to what happens
when the processor begins to “run”. The processor only runs after the clock is
running and stable and the electronic circuits have completed the required
setting of preconditions needed by the processor electronics.

The figure includes boxes containing the letters A to J (H omitted and
described later). These are referred to as “Gates”. When a Gate is “closed”
there is no connection via the lines shown between the registers or memory.
When a Gate is “open” data is copied from one register (or memory) to
another in the direction of the corresponding arrow in Figure 11. The
Accumulator can read and write data with memory through Gates B and C
respectively (Gates only operate in one direction). Note that the connecting
lines consist of eight wire connections for the bits b0 to b7 (i.e. the byte).

The eight data lines to memory are attached to various Gates which can
connect memory to registers. The data lines are known collectively as a “Data
Bus” and can connect many components in real devices (smartphones,
tablets etc) as well as memory. This is how information is passed around
within real systems. Similarly, there are Address and Control Buses in
practical machines.

The function completed by each Gate when open is shown in Table 3.

16

A Data from the ALU is placed in the Accumulator.
B Data from the addressed memory is placed in the Accumulator.
C Data in Accumulator is placed in the addressed memory. This function

also sets the memory for a “write”. All other memory access functions
are “read”.

D* Data from the Accumulator is placed in the ALU.
E* Data from the addressed memory is placed in the ALU.
F Data from the addressed memory is placed in the Instruction Register.
G Data from the addressed memory is placed in the Address Register.
I Data from Program Counter is placed in the Address Bus Register.
J Data from the Address Register is placed in the Address Bus Register.

Table 3 Gate Functions

* In fact, Gates D and E always act in unison. That is, when the ALU performs
a task data is always read from the Accumulator and memory at the same
time. Therefore, both Gates are triggered together and both are referred to as
Gate E in the rest of these books.

The opening and closing of the Gates is a major function of the Control
electronics in the processor. There is a strict logic to the operation of Gates.
For example, it is not permissible to open Gates I and J at the same time as
the ensuing Address would be in conflict between the Program Counter and
the Address Register.

The computer operates by loading an instruction from memory, placing it in
the Instruction Register (i.e. Fetch) and processing according to the
instruction loaded (i.e. Execute). All Fetch cycles are the same but the
Execute cycle depends upon the instruction. An example of the operation of
the cycles follows.

4.1 A Basic Operation

A basic operation is now described to demonstrate the cycles and the
operation of Gates by Control. The operation involves loading the
Accumulator with data.

Two types of load are described. The first involves the instruction “telling” the
processor immediately what data to load. That is, the instruction is saying
“load this particular value”. The second type of instruction is telling the
processor the memory address of the data it is to load.

Instructions create Machine Code, which are binary values in memory, loaded
into the Instruction Register and interpreted by Control. To make the
instructions more understandable to a person they are given letter short-forms
referred to as mnemonics, presumably because whoever chose this word had
a classical education. The letters chosen are arbitrary but are intended to

17

provide a clear understanding to a person reading or writing processor
instructions. Every commercial processor contains its own set of mnemonics.

Here, the first instruction mnemonic is called LDI (“Load Immediate”). The
second is LDA (“Load Accumulator from an Address”). The chosen Machine
Code values in this machine are “10” and “11” (hex) respectively. The
Machine Code values chosen in a real processor are carefully considered to
maximise the performance and minimise the cost of the electronics.

Inst Code Description
LDI 10 Load Accumulator, Immediate
LDA 11 Load Accumulator from Address

Table 4 Simple Load Instructions

Both the instructions have data associated with them. LDI needs to specify
the value to be loaded into the Accumulator, and LDA needs to specify the
address from which the processor finds the data to be loaded. Data
associated with an instruction is referred to as the “operand”. This is a
mathematical term and is only important here in that some instructions contain
an operand and some do not. The operand appears in memory immediately
following the instruction mnemonic. So the Instruction Codes here are

LDI operand
LDA operand

All operands are one byte in the simple processor. Commercial processors
usually contain instructions with multiple-byte operands. For the simple
processor instructions with an operand consist of two bytes and instructions
without an operand are one byte.

The example program following loads the number value 240 (decimal) into the
Accumulator, followed by a load from memory address 240 (decimal). The
value in address 240 is zero. However, the operand data appears in memory
in binary, represented here in hexadecimal form. Since 240 (decimal) is F0
(hex), the program in memory (program starts at 00) is as shown in Table 5.

Memory
Address

Instruction Code Description

00 LDI 10 Load Accumulator, Immediate data
01 F0 F0 Operand for LDI
02 LDA 11 Load Accumulator with data at address
03 F0 F0 Operand for LDA

Table 5 Simple Load Program

The processor runs from 00 after reset. Therefore the program is loaded into
memory from location 00. Just before the processor begins, the system looks
like Figure 12:

18

B 00 I

C
E A

E G XX J

F XX

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Address Register

Address Bus Register

Program Counter

more rows…

Accumulator XX

Aithmetic Logic Unit

Data

CONTROL
Instruction Register XX

Figure 12 Load Program - Reset State

All the Gates are closed, the Program Counter (PC) is 00, the program is
present in memory from location 00 and location F0 in memory is 00. “XX”
indicates “Don’t Care”, which means the current value doesn’t matter as it has
no impact on what is to follow.

The program starts. In the following figures, open Gates and accessed
memory bytes are indicated using dark shading.1

1 The following sequence is animated in the “User Guide” section of Book 2 Part 1

19

Fetch LDI

B 00 I

C
E A

E G XX J

F 00

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Accumulator XX Program Counter

Aithmetic Logic Unit Address Register

Data more rows…

CONTROL
Instruction Register 10 Address Bus Register

Figure 13 Load Program - Fetch LDI

The processor electronics invoke a Fetch cycle. This cycle is always the same
and loads the data addressed by the PC into the Instruction Register (IR).
This is achieved by Control opening Gates I and F and reading memory
(Figure 13).

The PC value is placed into the Address Bus Register and location 00 is
selected in memory. The value stored at the address (10) is read and placed
into the IR. Once accomplished, Control closes the Gates and increments the
PC (Figure 14).

B 01 I

C
E A

E G XX J

F 00

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Accumulator XX Program Counter

Aithmetic Logic Unit Address Register

Data more rows…

CONTROL
Instruction Register 10 Address Bus Register

Figure 14 LDI Fetch - Increment PC

20

Execute LDI

B 01 I

C
E A

E G XX J

F 01

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Data more rows…

CONTROL
Instruction Register 10 Address Bus Register

Accumulator F0 Program Counter

Aithmetic Logic Unit Address Register

Figure 15 Load Program - Execute LDI

The processor enters the Execute cycle. The LDI instruction loads data
provided immediately with the instruction into the Accumulator. I.e. the data
byte pointed to by the PC. Therefore, for the LDI instruction, Control opens
Gates I and B and reads memory (Figure 15).

The task is completed, so it only remains for Control to close the Gates,
increment the PC (Figure 16) and the Execute cycle is completed.

B 02 I

C
E A

E G XX J

F 01

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Accumulator F0 Program Counter

Aithmetic Logic Unit Address Register

Data more rows…

CONTROL
Instruction Register 10 Address Bus Register

Figure 16 LDI Execute - Increment PC

21

Fetch LDA

B 02 I

C
E A

E G XX J

F 02

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Data more rows…

CONTROL
Instruction Register 11 Address Bus Register

Accumulator F0 Program Counter

Aithmetic Logic Unit Address Register

Figure 17 Load Program - Fetch LDA

The processor re-enters the Fetch cycle. The data at the address held in the
PC is loaded into the IR (Figure 17).

The value 11 is read and placed into the IR. Once accomplished, Control
closes the Gates and increments the PC (Figure 18).

B 03 I

C
E A

E G XX J

F 02

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Accumulator F0 Program Counter

Aithmetic Logic Unit Address Register

Data more rows…

CONTROL
Instruction Register 11 Address Bus Register

Figure 18 LDA Fetch - Increment PC

22

Execute LDA

B 03 I

C
E A

E G F0 J

F 03

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Data more rows…

CONTROL
Instruction Register 11 Address Bus Register

Accumulator F0 Program Counter

Aithmetic Logic Unit Address Register

Figure 19 Load Program - Execute LDA 1

The processor enters the Execute cycle for LDA. This instruction uses the
data supplied with it as an address to the actual data to load into the
Accumulator. So the processor must load data pointed to by the instruction
address. In this case, the address is at location 03, which contains F0. To
access the address, Control loads the supplied data into the Address
Register. I.e. it opens Gates I and G and reads memory (Figure 19).

To load the Accumulator with the required data, Control must now close
Gates I and G, open Gates J and B and read memory (Figure 20).

B 04 I

C
E A

E G F0 J

F F0

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 F0 11 F0 0

1
…

00 F
MEMORY

Accumulator 00 Program Counter

Aithmetic Logic Unit Address Register

Data more rows…

CONTROL
Instruction Register 11 Address Bus Register

Figure 20 Load Program - Execute LDA 2

23

The task is accomplished, the Gates are closed and the PC incremented. The
Execute cycle is completed.

It is useful to regard each phase opening and closing Gates as distinct
Machine Cycles. This is because a practical machine is likely to be designed
around such cycles (as is the simulator in Book 3). Therefore, it can be seen
from the forgoing that the instructions described consist of the following
Machine Cycles:

Fetch Execute 1 Execute 2
LDI Gates I, F

Increment PC
Gates I, B
Increment PC

LDA Gates I, F
Increment PC

Gates I, G
Increment PC

Gates J, B

Table 6 Machine Cycles for Simple Load Instructions

So LDI consists of two Machine Cycles and LDA three. Some of the
instructions described in Appendix C have five cycles. The processor
microcode is developed to deliver the Gate and PC operations for each
Machine Cycle in the instruction set. The processor control electronics is
informed of the number of cycles required by each instruction. How this is
achieved for the simulated simple processor is described in Part 2.

For LDA the final Increment PC could occur in either of the two Execute
cycles and which one is determined by practical design (i.e. simplest
implementation). Here it is on the first Execute cycle.

All the instructions operate by sequencing the opening/closing of Gates and
incrementing the PC. In addition, the instruction may indicate a specific action
to be performed. For example, the Gate sequences for ALU operations are
the same for addition, subtraction and logical operations. Control sets the
specific operation required in the ALU according to the instruction. A full list of
the Machine Cycles for the simple processor is included in Appendix C.

The simple load accumulator instructions illustrate how the processor
interacts with memory. Microcode is developed for each instruction supported
for a particular processor design to operate the gates and memory to fulfil
tasks set to the processor. This leaves it necessary to explain how the
processor manipulates data and makes decisions. Data manipulation occurs
within the following registers

 Arithmetic Logic Unit
 Accumulator

Before this, a Halt instruction is described.

24

4.2 Halt Instruction

Of course, in the example above, the processor would move on to fetch an
instruction from location 04. If the processor is required to stop a “Halt”
instruction can be used. This prevents the processor from attempting to
execute instructions where no (intended) instruction exists in memory (for
example the memory area could contain data).

The simple processor does not distinguish Machine Codes from data and the
position of the codes in memory is critical to correct operation. A processing
flow adrift from the intended path leads to malfunction usually referred to as a
“crash”. Modern processors have built-in safeguards and recovery systems
but even these may not be perfect.

The Halt instruction simply stops the PC from incrementing and effectively
causes the processor to remain on the Halt instruction. (To this end it impacts
the Fetch cycle in a manner unique to this code). The instruction mnemonic
for the simple processor is defined as HLT and assigned code “00”. The
instruction has no operand.

Inst Code Description
HLT 00 Halt processor

Table 7 Halt Instruction

An electronic hardware reset is required to clear the processor from the Halt.

25

5 Arithmetic Logic Unit

The processor is required to make calculations on data it is handling. The
calculations occur between data held in the Accumulator and data in memory.
The Arithmetic Logic Unit (ALU) can perform the following operations on the
input data.

 Addition
 Subtraction
 Logical AND
 Logical OR
 Logical Exclusive OR

A summary of the functions follows. More detail is provided in Part 2.

5.1 Addition

Two input binary numbers are added. For example, if the numbers 35 and 17
are added the result is 52 (Figure 21):

Decimal Hex Decimal Hex
Accum. 35 23 52 34
Memory 17 11

ALU
add

Figure 21 Simple addition

The result of adding two numbers could be greater than 255 (all bits set to “1”
in the register). Therefore, there needs to be a “Carry” flag to indicate an
overflow.

The instructions for addition in the simple processor always check the Carry
flag and add one if the flag is set to one. Therefore, at the beginning of
addition the Carry flag must be preset to zero. Figure 22 shows addition in the
simple processor and an example of an overflow occurring. The Carry flag
takes 256 (decimal) forward to any higher-power addition.

Decimal Hex Decimal Hex
Accum. 175 AF 15 0F
Memory 96 60
Carry 0

ALU
1

Figure 22 Overflow addition

Larger numbers can be represented over multiple bytes and the Carry flag
allows multiple-byte addition to take place. Multiple-byte arithmetic is
described in Part 2.

26

5.2 Subtraction

Two input binary numbers are subtracted. For example, if the numbers 35 and
17 are subtracted the result is 18 (Figure 23):

Decimal Hex Decimal Hex
Accum. 35 23 18 12
Memory 17 11

ALU
sub

Figure 23 Simple subtraction

Answers for some sums may be less than zero. Negative answers are
somewhat more complicated since their interpretation is a little trickier.
Negative answers are described in Part 2.

The Carry flag indicates if the number is positive or negative and has the
value one for positive answers. The Carry flag is preset to one at the
beginning of subtraction (for a number to be subtracted it must be positive).
Therefore, the subtraction in Figure 23 is more precisely described by Figure
24. More detail on the operation of the Carry flag is given in Part 2.

Decimal Hex Decimal Hex
Accum. 35 23 18 12
Memory 17 11
Carry

ALU
sub

1 1

Figure 24 Simple subtraction showing Carry

For numbers greater than 255, multiple-byte subtraction is used. Part 2
describes multiple-byte subtraction.

5.3 Logical Operators

The logical operators are
 Logical AND
 Logical OR
 Logical Exclusive OR

These are “bit operations”. That is, the output of each bit of the byte from the
operation is only determined by the corresponding bits in the input bytes,
without influence from any other bit position. The byte from memory and the
Accumulator byte feed into the operation and each corresponding bit of the
two bytes is processed.

The logic applying for the three operations is shown in Table 8.

27

AND For each input bit position, the output AND of the corresponding
bit is “1” only if ALL of the input bits are “1”, and is “0” if ANY of
the input bits is “0”.

OR For each input bit position, the output OR of the corresponding
bit is “1” if ANY of the input bits are “1”, and is ONLY “0” if ALL
the input bits are “0”.

Excl OR For each input bit position, the output Exclusive OR of the
corresponding bit is “1” only if one input bit is “1” AND one input
bit is “0”, and is “0” if BOTH input bits are “1” or if BOTH input bits
are “0”.

Table 8 Logic Operators

The AND and OR logic on bytes in general can apply to any number of input
bytes. Exclusive OR only applies to two input bytes.

The ALU only deals with two input bytes (Accumulator and Memory). Each
corresponding bit of the bytes read during the operation is compared and the
output bit is determined (using the logic described) as shown in Table 9.

Input Output
Memory bit Acc bit AND OR Excl OR

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 9 ALU Logical operation outputs

Example bytes are shown in Table 10:

Inputs Memory
Accumulator

1 0 1 1 0 1 0 1
1 1 0 1 1 0 0 1

Outputs AND
OR
Excl OR

1 0 0 1 0 0 0 1
1 1 1 1 1 1 0 1
0 1 1 0 1 1 0 0

Table 10 Examples of ALU logical operation

5.4 Instruction Codes

Instructions are issued to the processor (through the Instruction Register) to
perform the ALU calculations. During the processing the ALU accesses the
data in the accumulator and in memory. As seen before in memory
operations, the data from memory may be passed immediately by the
instruction, or may be contained in another memory location accessed by an
address passed in the instruction. Similarly, the ALU instructions indicate if
the operand contains immediate data or a data address.

28

The ALU instruction mnemonics for the simple processor are chosen as
shown in Table 11 and include an operand:

Inst Code Description
ADI 48 Add with Carry, Immediate
ADC 40 Add with Carry from Address
SBI 49 Subtract with Carry, Immediate
SBC 41 Subtract with Carry from Address
ANI 4F Logical AND, Immediate
AND 47 Logical AND from Address
ORI 4E Logical OR, Immediate
ORA 46 Logical OR from Address
XOI 4D Logical Exclusive OR, Immediate
XOR 45 Logical Exclusive OR from Address

Table 11 ALU Instructions

Arithmetic instructions require the ability to manipulate the Carry flag explicitly
at the beginning of calculations (Table 12). The instructions do not include an
operand.

Inst Code Description
SEC 81 Set the Carry flag
CLC 80 Clear the Carry flag

Table 12 Carry Flag operator Instructions

5.5 ALU Layout

The ALU consists of two eight-bit inputs, an eight-bit output and the Carry
flag. It is represented in the rest of the books as shown in Figure 25.

B

C
E A

E

Accumulator

Out
Carry ALU In In

Figure 25 The complete ALU with Accumulator

29

6 Accumulator Operations

Processor operations move data through the Accumulator. The capability of
processors to make decisions based upon data derives, in part, from the data
held in the Accumulator. Specifically, a flag associated with the Accumulator
indicates if the value held by the Accumulator is zero or not zero. That is, if
the value held is 00 (hex), the “Zero flag” is set to “1”. For ANY other
Accumulator value the flag is set to “0”. The Zero flag is included in further
Accumulator diagrams in these books.

Sometimes it is useful to shift bits along a register. That is, a bit value is
moved into one of its neighbouring bits. For example, each “left shift” of bits
representing a number multiplies the number by two. Figure 26 shows an
example of left-shifting a byte and doubling its numeric value.

128 64 32 16 8 4 2 1 Hex Decimal

0 0 1 0 1 1 0 1 2D 45

left shift 0 1 0 1 1 0 1 0 5A 90

left shift 1 0 1 1 0 1 0 0 B4 180

Figure 26 Left shifts multiplies by 2

This forms a basis for the multiplication of binary numbers. In fact, “shifting”
and “rotating” the bits in a register find many practical applications in
programming. The register used for shifting and rotating in the simple
processor is the Accumulator.

6.1 Shifting

Shifting involves moving the binary bits along the Accumulator to the left or
right. The bit at the right end during a left shift, and at the left end during a
right shift, is set to zero. The bits at the other end of the Accumulator fall out
of the Accumulator and move into the Carry flag. After eight shifts the value in
the Accumulator would be 00. After nine shifts the Accumulator and Carry flag
would be all zeroes.

Figure 27 shows successive left shifts with bit b7 moving into the Carry flag
until all bits are zero (nine shifts). Right shifts follow a similar pattern with bits
moving the other way and bit b0 moving into the Carry flag.

30

Bit Bit
Carry b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 1 0 1 1 0 1

1 0 0 1 0 1 1 0 1 0

2 0 1 0 1 1 0 1 0 0

3 1 0 1 1 0 1 0 0 0

4 0 1 1 0 1 0 0 0 0

5 1 1 0 1 0 0 0 0 0

6 1 0 1 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

Figure 27 Successive left shifts

6.2 Rotating

Rotating also involves moving the binary bits along the Accumulator to the left
or right. The bit at the right end during a left shift, and at the left end during a
right shift, is set to the value in the Carry flag. The bits at the other end of the
Accumulator fall out of the Accumulator and move into the Carry flag. After the
ninth rotate the value in the Accumulator and Carry flag would be back to the
start values.

Figure 28 shows successive left rotates with the Carry flag moving into bit b0
and being replaced by bit b7 until all bits are restored to their original position
(nine rotates). Right rotates follow a similar pattern with bits moving the other
way and the Carry flag moving into bit b7 being replaced by bit b0.

31

Bit Bit
Carry b7 b6 b5 b4 b3 b2 b1 b0 Hex

0 0 0 1 0 1 1 0 1 2D

1 0 0 1 0 1 1 0 1 0

2 0 1 0 1 1 0 1 0 0

3 1 0 1 1 0 1 0 0 0

4 0 1 1 0 1 0 0 0 1

5 1 1 0 1 0 0 0 1 0

6 1 0 1 0 0 0 1 0 1

7 0 1 0 0 0 1 0 1 1

8 1 0 0 0 1 0 1 1 0

9 0 0 0 1 0 1 1 0 1 2D

Figure 28 Successive left rotates

6.3 Instruction Codes

The Accumulator instruction mnemonics for the simple processor are chosen
as shown in Table 13. The instructions do not include an operand.

Inst Code Description
SHR 60 Shift Accumulator Right
SHL 61 Shift Accumulator Left
ROR 62 Rotate Accumulator Right
ROL 63 Rotate Accumulator Left

Table 13 Accumulator Instructions

32

7 Branching and Programming

A key feature of the processor is its ability to make decisions based upon
data. This really means the program path through the instructions is altered
according to data. This is known as “branching”. There are many ways to
achieve this based upon conditions within the processor, or by external
hardware (electronic) signals. Two internal means are described here, both of
which are commonly used by commercial processors.

Branch processing occurs through the issue of a Branch instruction. There are
two types of branch: Unconditional and Conditional.

The Unconditional branch causes the processor program path to jump to the
address supplied with the instruction. This is described in Appendix C and is
useful where coding in memory requires the program path to loop or bypass
data, for example.

The Conditional branch instructions also supply a memory address. However
the processor program path only jumps to the address if a condition is met. If
the condition is not met, then the program path is not altered and the
instruction following the branch instruction is fetched.

In the simple processor the address given within the instruction is loaded into
the Address Register. If the condition is met, the content of the Address
Register is placed in the Program Counter and the jump occurs on the next
fetch. If the condition is not met, then the Address Register is not placed in the
Program Counter and the instruction following the branch in memory is
fetched.

The branch conditions and the instruction mnemonics for the simple
processor are shown in Table 14 and are based upon the status of the two
flags associated with the ALU and the Accumulator. The instructions include
an operand.

Inst Code Description
BCS A0 Branch if Carry flag is set
BCN A1 Branch if Carry flag is not set
BEZ A2 Branch if Zero flag is set
BNZ A3 Branch if Zero flag is not set
BRA A4 Branch unconditionally

Table 14 Branch Instructions

The simple processor described in this book is now represented in its
complete form in Figure 29.

33

B I

C
E A H

E G J

F

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
0
1

…
F

MEMORY

Program CounterAccumulator

Data more rows…

Zero

Address Register

CONTROL
Instruction Register Address Bus Register

Carry ALU

Figure 29 The complete simple processor

Gate H is described in the Table 15.

H Data from the Address Register is placed in the Program Counter:
 For a conditional branch ONLY if the branch condition is met.
 Always for an unconditional branch.

Table 15 Gate H Function

7.1 A Simple Branch

The following simple example program shows how conditional branching
works in the processor.2

The program task is

Starting with the number “2”
Subtract “1” from the number
If the result is not zero, then go back to the subtract line above
Halt the program

One thing to notice with branch instructions is that the complexity of
programming has increased due to the need to know where in memory the
program is jumping to. Reference names or program structures are used in
real programming and Book 2 Part 1 describes a simple convention example
used by the emulator. Here the branch address has to be given explicitly. This
can be derived by writing out the instructions in a table with memory address
references which can be seen directly. See Table 16. The program starts from
address 00. The microcode for each instruction is given in Appendix C.

2 The program is available in the emulator Book 2.

34

For the subtraction the Carry flag is set before the subtraction instruction
indicating that the number to be subtracted at the start is positive. (See
section 5.2. The full reasoning is described in Part 2).

Memory
Address

Instruction Code Description

00 LDI 10 Load Accumulator, Immediate data
01 02 02 Operand for LDI: Immediate data 02
02 SEC 81 Set the Carry flag
03 SBI 49 Subtract with Carry, Immediate
04 01 01 Operand for SBI: Subtract 1
05 BNZ A3 Branch if Not Zero to Address
06 03 03 Operand for BNZ: Branch to address 03
07 HLT 00 Halt

Table 16 Simple Branch program

The program is placed in memory.

X B 00 I

C
E A H

X E G XX J

F XX

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator XX Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register XX Address Bus Register

Figure 30 Branch Program - Reset State

The processor is in its reset state with the program about to start. All the
Gates are closed and the PC is set to 00. Figure 30 shows the initial state.

The program starts.

35

Cycle 1 – Fetch LDI

X B 00 I

C
E A H

X E G XX J

F 00

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register 10 Address Bus Register

XX
Carry ALU XX XX

Zero Accumulator XX Program Counter

Figure 31 Branch Program - Fetch LDA

The Fetch cycle loads the first instruction into the Instruction Register (Figure
31). This is the load Accumulator with immediate data instruction.

Cycle 2 – Execute LDI

0 B 01 I

C
E A H

X E G XX J

F 01

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 02 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register 10 Address Bus Register

Figure 32 LDA Execute 1 - Load Address

The Execute cycle loads the Address Register with immediate data (Figure
32). The data is not zero and the Zero flag is “0”.

36

Cycle 3 – Fetch SEC

0 B 02 I

C
E A H

X E G XX J

F 02

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 02 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register 81 Address Bus Register

Figure 33 Branch Program - Fetch SEC

The next instruction is fetched (Figure 33). Since a subtraction is to be
performed for the first time and the number to be subtracted is positive the
Carry flag is set. The instruction has no operand.

Cycle 4 – Execute SEC

0 B 03 I

C
E A H

1 E G XX J

F 02

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register 81 Address Bus Register

XX
Carry ALU XX XX

Zero Accumulator 02 Program Counter

Figure 34 Execute SEC

The Set Carry instruction is executed (Figure 34). The operation is internal to
the processor and no memory is used. The Execute cycle is complete.

37

Cycle 5 – Fetch SBI

0 B 03 I

C
E A H

1 E G XX J

F 03

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 02 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

Figure 35 Branch Program - Fetch SBI

The next instruction is fetched (Figure 35).The instruction invokes a subtract
using immediate data.

Cycle 6 – Execute SBI 1

0 B 04 I

C
E A H

Subtract
1 E G XX J

F 04

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 02 Program Counter

01
Carry ALU 02 01

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

Figure 36 Execute SBI 1 - Read data to ALU

During the first Execute cycle the Accumulator and immediate data are sent to
the ALU and subtracted. The answer is positive and Carry remains set (Figure
36).

38

Cycle 7 – Execute SBI 2

0 B 05 I

C
E A H

Subtract
1 E G XX J

F 04

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 01 Program Counter

01
Carry ALU 02 01

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

Figure 37 Execute SBI 2 – ALU result to Accumulator

The second Execute cycle provides the answer to the Accumulator and the
PC is incremented ready to fetch the next instruction. The answer is not zero
and the Zero flag remains “0”. The operation is internal to the processor and
memory is not used (Figure 37).

Cycle 8 – Fetch BNZ

0 B 05 I

C
E A H

1 E G XX J

F 05

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 01 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

Figure 38 Branch Program - Fetch BNZ

The next instruction is fetched (Figure 38). The instruction loaded is “Branch if
Not Zero”. The branch address follows the instruction.

39

Cycle 9 – Execute BNZ 1

0 B 06 I

C
E A H

1 E G 03 J

F 06

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 01 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

Figure 39 Execute BNZ 1 - Load branch address

During the first Execute cycle the branch address is loaded into the Address
Register (Figure 39).

Cycle 10 – Execute BNZ 2

0 B 03 I

C
E A H

1 E G 03 J

F 06

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 01 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

Figure 40 Execute BNZ 2 – Update PC on conditional

The second Execute cycle controls Gate H and opens the Gate if the Zero
flag is not set (i.e. the Accumulator is not zero). The Gate is opened since the
Accumulator value is not zero and the PC is updated from the Address
Register (Figure 40). The instruction is completed and the next Fetch occurs
from the updated PC address.

40

Cycle 11 – Fetch SBI

0 B 03 I

C
E A H

1 E G 03 J

F 03

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

XX
Carry ALU XX XX

Zero Accumulator 01 Program Counter

Figure 41 Branch Program - Fetch SBI again

The program loops back to reload the subtract instruction (Figure 41)

Cycle 12 – Execute SBI 1

0 B 04 I

C
E A H

Subtract
1 E G 03 J

F 04

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

00
Carry ALU 01 01

Zero Accumulator 01 Program Counter

Figure 42 Execute SBI again 1 - Read data to ALU

During the first Execute cycle, the Accumulator and immediate data are sent
to the ALU and subtracted. No borrow is required and Carry remains set
(Figure 42).

41

Cycle 13 – Execute SBI 2

1 B 05 I

C
E A H

Subtract
1 E G 03 J

F 04

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register 49 Address Bus Register

00
Carry ALU 01 01

Zero Accumulator 00 Program Counter

Figure 43 Execute SBI again 2 – ALU result to Accumulator

The second Execute cycle provides the answer to the Accumulator and the
PC is incremented ready to fetch the next instruction. The answer is zero and
the Zero flag is set to “1”. The operation is internal to the processor and
memory is not used (Figure 43).

Cycle 14 – Fetch BNZ

1 B 05 I

C
E A H

1 E G 03 J

F 05

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

XX
Carry ALU XX XX

Zero Accumulator 00 Program Counter

Figure 44 Branch Program - Fetch BNZ again

The instruction loaded is “Branch if Not Zero”. The branch address follows the
instruction (Figure 44).

42

Cycle 15 – Execute BNZ 1

1 B 06 I

C
E A H

1 E G 03 J

F 06

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

XX
Carry ALU XX XX

Zero Accumulator 00 Program Counter

Figure 45 Execute BNZ again 1 - Load branch address

During the first Execute cycle the branch address is loaded into the Address
Register (Figure 45).

Cycle 16 – Execute BNZ 2

1 B 07 I

C
E A H

1 E G 03 J

F 06

PROCESSOR

High Address

0 1 2 3 4 5 6 7 8 9 A B C D E F Low
10 02 81 49 01 A3 03 00 0

1
…
F

MEMORY

Zero Accumulator 00 Program Counter

XX
Carry ALU XX XX

Data more rows…

Address Register

CONTROL
Instruction Register A3 Address Bus Register

Figure 46 Execute BNZ again 2 – Update PC on conditional

The second Execute cycle controls Gate H and opens the Gate if the Zero
flag is not set (i.e. the Accumulator is not zero). The Gate is not opened since
the Accumulator value is zero and the Zero flag is “1”. The PC is incremented
to fetch the next instruction (Figure 46). The instruction is completed and the
next Fetch occurs.

43

Cycle 17 - HLT

The processor loads the HLT (Halt) instruction “00” and the program stops.

This simple branch example demonstrates how conditional processing based
upon data and results occurs.

The ability to manipulate data and change program paths can be used to
solve complex problems by breaking-down the problems into elementary
calculations involving the Carry and Zero flags. The skill required is in the
construction of the computer program.

7.2 A Note On Programming

Programming includes some art as well as science since there are generally a
number of ways to solve a problem. Some programs will be better than others
depending upon how they are measured (e.g. conserving code space,
maximising speed, achieving consistency of calculation across data can all
lead to different programs for the same problem).

The type of problems suited to programmed solutions include data transfer
(Load/Store instructions), data manipulation (ALU and Accumulator
instructions) and decision-making (Branch instructions). The simple processor
provides this capability.

Programming using the instruction mnemonics of a processor is referred to as
“Assembler” programming. The codes that include memory addresses use the
actual byte value within the instruction. Since this is generally unknown to the
programmer (e.g. branch address) a tool is used which can calculate the
values from a symbolic convention which uses labels to represent the memory
addresses. Book 2 Part 1 contains a suitable convention and the emulator
includes the tool. Book 1 Part 2 and Book 3 Part 1 include some sample
programs which are also included in the emulator.

Problems need to be analysed logically so that a suitable program can be
constructed. One technique is to represent the process in a flow diagram and
examples are included in Book 3 Part 1. Programming is of course a complete
study itself.

Although some assembler programming is still used where performance or
memory size is critical, programming is normally practiced using software.
Software removes the need to consider most of the processor machines
characteristics. A compiler tool converts software into Machine Code routines
that deliver the required functionality.

44

8 Concluding Remarks

It can be seen from the foregoing that the computer processor is little more
than a programmable calculating machine which is also capable of handling
and storing information. The speed with which a real machine can perform the
tasks is immense (millions of instructions per second) and is quite capable of
providing what appears to be a comprehending face to the world. However,
the face is illusory and is simply a measure of the software engineer’s
ingenuity. Artificial Intelligence is exactly what it says: Artificial. If the
instructions go wrong the machine will malfunction, although even this can be
detected and systems put into play which may recover the situation.

The simple processor described does not possess any input/output facility. Of
course this is how most people interact with their devices. Each facility
(keyboard, display, sound system, network controller etc) may contain its own
processor which communicates directly to a main processor. Information on a
screen display is effectively a write memory where the data passed induces a
particular display. The network controller allows the system to communicate
with other systems (LAN, internet etc) for the exchange of data.

Another major characteristic of practical devices such as smartphones is that
they already contain a program known as an “operating system” which
provides a user-interface from power-up. The system provides the
environment which supports the applications (“Apps”) required by users.

In summary, the simple processor provides a platform upon which more
complex devices could be designed. This can be achieved by adding more
registers and additional functionality. Additional instructions can be provided
(with corresponding microcode). Part 2 describes some of the additional
features of practical processors, along with an introduction to electronic logic
and a description of the processor control system used in Book 3.

45

A.Appendix: Binary Numbers

An appreciation of the binary system of numbers is best approached through
a deeper understanding of the usual way in which numbers are written. That
is, the decimal system.

The numbers fifteen, thirty-seven, one hundred and fifty-six and five hundred
and seventy-four are represented as 15, 37, 156 and 574 respectively. What
is actually meant by the numbers is the following:

15 1 5
37 3 7

156 1 5 6
574 5 7 4

Thousands are added when numbers increase beyond 999. Each additional
digit is a power of ten greater than the previous digit and is known as “base
10”. The number of tens, hundreds etc can be represented by one of the ten
numbers (0 to 9) available in decimal. What is happening here is the units,
tens and hundreds are individually multiplied by the number assigned as
follows:

 (1 x 10) + 5 = 15
 (3 x 10) + 7 = 37

(1 x 100) + (5 x 10) + 6 = 156
(5 x 100) + (7 x 10) + 4 = 574

Binary works in the same way except only two numbers (0 and 1) are
available. The powers increase as powers of two (i.e. “base 2”). So the
numbers above can be obtained as follows:

15 1 1 1 1
37 1 0 0 1 0 1

156 1 0 0 1 1 1 0 0
574 1 0 0 0 1 1 1 1 1 0

The power of two containing a one is added to the total but entries of zero are
ignored (since multiplying by zero results in zero). The binary representations
are therefore as follows

15 1111
37 100101

156 10011100
574 1000111110

46

When adding two decimal numbers individual digits may overflow the number
base (10) during the summation. For example, adding seven to 14 results in
the units overflowing. The overflow is carried into the tens column as one to
be added to the tens addition. This can be written as follows:

1 4
 + 7

Carry 1
Sum 2 1

The binary version works in the same way except the overflow occurs when
two is reached rather than 10 and can be written as follows.

16 8 4 2 1
1 1 1 0

 + 1 1 1
Carry 1 1 1
Sum 1 0 1 0 1

It can be seen that the rules for binary addition are as follows.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 and 1 to carry

When there is already one to carry 1 + 1 + Carry = 1 with 1 to carry as occurs
above for the binary bit “4”.

47

B.Appendix: Hexadecimal Numbers

Hex is used here as a convenient way to represent binary data in bytes. The
two four-bit groups are written as two hex digits. The digits also represent the
numbers in a system where each additional digit increases by a power of 16
i.e. “base 16”.

Appendix A contains examples of arithmetic using decimal (base 10) and
binary (base 2) numbers. This Appendix introduces hexadecimal arithmetic.

When converting the byte hex value to decimal the digits can be regarded as
base 16 numbers. Therefore, the conversion of the byte values to decimal
shown in Figure 5 do not need to be reduced to the binary form but can be
converted directly as follows.

4B = (4 x 16) + 11 = 75
CC = (12 x 16) + 12 = 204
05 = (0 x 16) + 5 = 5

When adding numbers the individual digit additions overflow when the number
base is exceeded. The same is true for hexadecimal where the number base
is 16. Examples follow, with each column a power of 16 greater than the
previous:

256 16 1 256 16 1
2 F C C
0 5 4 9

Carry 1 Carry 1 1
Sum 3 4 Sum 1 1 5

48

C.Appendix: Instruction Set for the Simple
Processor

The full instruction set for the simple processor described in these books is
shown in the table. Some of the instructions have not yet been introduced and
all instructions are described fully in the following.

Many of the instructions shown in the following include the microcode “Int Op”.
This signifies “Internal Operation” and in the design of the simple processor
(Book 3) prevents external memory being accessed since no memory
operation is required. Increment PC is represented by “PC=PC+1”.

Inst Code Operand MC Task
HLT 00 N 2 Halt
LDI 10 Y 3 Load Accumulator, Immediate
LDA 11 Y 3 Load Accumulator
LDX 13 Y 5 Load Accumulator, Indirectly
STA 20 Y 3 Store Accumulator
STX 22 Y 5 Store Accumulator, Indirectly
ADC 40 Y 4 Add with Carry
SBC 41 Y 4 Subtract with Carry
XOR 45 Y 4 Exclusive Or
ORA 46 Y 4 Or
AND 47 Y 4 And
ADI 48 Y 3 Add with Carry, Immediate
SBI 49 Y 3 Subtract with Carry, Immediate
XOI 4D Y 3 Exclusive Or, Immediate
ORI 4E Y 3 Or, Immediate
ANI 4F Y 3 And, Immediate
SHR 60 N 2 Shift Right
SHL 61 N 2 Shift Left
ROR 62 N 2 Rotate Right
ROL 63 N 2 Rotate Left
CLC 80 N 2 Clear Carry
SEC 81 N 2 Set Carry
BCS A0 Y 3 Branch if Carry Set
BCN A1 Y 3 Branch if Carry Not Set
BEZ A2 Y 3 Branch if Acc Zero
BNZ A3 Y 3 Branch if Acc Not Zero
BRA A4 Y 3 Branch unconditionally

Table 17 Simple Processor Instruction Set

49

C.1 HLT – HALT

Description:

A HLT instruction stops the processor proceeding through memory and
attempting to load more instructions. The Program Counter is prevented from
incrementing during the Fetch state (a unique feature for the instruction). No
activity takes place during Execute.

Instruction:

Inst Code Operand Description
HLT 00 N Halt processor

Microcode:

Execute cycle:

No Gates or other activities become active during the Execute cycle. On
completion, the processor reverts to the Fetch cycle with the Program Counter
unchanged and the processor repeats the Fetch cycle on the HLT instruction
indefinitely or until the processor is reset by the electronics.

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

HLT 2 I, F

50

C.2 LDI – LOAD IMMEDIATE

Description:

Load Immediate results in the instruction operand being placed in the
Accumulator after the single Execute cycle.

Instruction:

Inst Code Operand Description
LDI 10 Y Load Accumulator, Immediate

Microcode:

Execute cycle:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and B
 Read memory (Instruction

operand is written into
Accumulator)

 Close Gates
 Increment Program Counter

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

LDI 2 I, F
PC=PC+1

I, B
PC=PC+1

51

C.3 LDA – LOAD ACCUMULATOR FROM ADDRESS

Description:

Load Accumulator from address results in the data in memory at the address
given in the instruction operand being placed in the Accumulator after the
second Execute cycle.

Instruction:

Inst Code Operand Description
LDA 11 Y Load Accumulator from Address

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

LDA 3 I, F
PC=PC+1

I, G
PC=PC+1

J, B

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gates J and B
 Read memory (Content of

addressed memory copied into
Accumulator)

 Close Gates

52

C.4 LDX – LOAD ACCUMULATOR FROM INDIRECT ADDRESS

Description:

Load Accumulator from indirect address results in the data loaded from the
memory address given by the instruction operand is in turn used as an
address to the data to be placed in the Accumulator. (Indirect addressing is
particularly useful where the address to data is calculated e.g reading each
byte in a message consisting of multiple bytes in memory).

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

LDX 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, B

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gate J
 Address Register copied into

Address Bus Register
 Close Gate

Inst Code Operand Description
LDX 13 Y Load Accumulator from Indirect

Address

53

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 3

 Open Gate G
 Read memory (Address Bus

Register retains address from
Execute 2 and content of
addressed memory copied into
Address Register)

 Close Gates

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 4

 Open Gates J and B
 Read memory (Content of

addressed memory copied into
Accumulator)

 Close Gates

54

C.5 STA – STORE ACCUMULATOR TO ADDRESS

Description:

Store Accumulator places the data in the Accumulator in the memory at the
address given by the operand.

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

STA 3 I, F
PC=PC+1

I, G
PC=PC+1

J, C

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gates J and C
 Write memory (Content of

Accumulator copied into
addressed memory)

 Close Gates

Inst Code Operand Description
STA 20 Y Store Accumulator to memory

55

C.6 STX – STORE ACCUMULATOR TO INDIRECT ADDRESS

Description:

Store Accumulator Indirect places the data in the Accumulator in the memory
at the address given by the data in the memory location pointed to by the
operand. (Indirect addressing is particularly useful where the address to data
is calculated e.g writing a message over multiple bytes in memory).

Instruction:

Inst Code Operand Description
STX 22 Y Store Accumulator to memory

indirectly

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

STX 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, C

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gate J
 Address Register copied into

Address Bus Register
 Close Gate

56

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 3

 Open Gate G
 Read memory (Address Bus

Register retains address from
Execute 2 and content of
addressed memory copied into
Address Register)

 Close Gate

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 4

 Open Gates J and C
 Write memory (Content of

Accumulator copied into
addressed memory)

 Close Gates

57

C.7 ADC – ADD WITH CARRY FROM ADDRESS

Description:

The instruction adds the content of the Accumulator, Carry and the data read
from the operand memory address. The result is placed into the Accumulator
and the Carry flag is updated.

Instruction:

Inst Code Operand Description
ADC 40 Y Add with Carry

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ADC 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Set ALU for Addition
 Open Gates J and E
 Read memory (Addressed

memory and Accumulator data
sent to ALU)

 Close Gates

58

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 3

 Open Gate A (ALU result is sent
to Accumulator)

 Close Gate

59

C.8 SBC – SUBTRACT WITH CARRY FROM ADDRESS

Description:

The instruction subtracts with Carry the data read from the operand memory
address from the content of the Accumulator. The result is placed into the
Accumulator and the Carry flag is updated.

Instruction:

Inst Code Operand Description
SBC 41 Y Subtract with Carry

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

SBC 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

Execute cycles:

Gate operation is as per ADC instruction. Only change to execution is to
Execute 2 where ALU is set for Subtraction instead of Addition.

60

C.9 XOR – EXCLUSIVE OR FROM ADDRESS

Description:

Each bit in the Accumulator is processed in a logical Exclusive OR with its
corresponding bit in the memory byte addressed by the operand and the
result placed into the Accumulator.

Instruction:

Inst Code Operand Description
XOR 45 Y Logical Exclusive OR

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

XOR 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

Execute cycles:

Gate operation is as per ADC instruction. Only change to execution is to
Execute 2 where ALU is set for Logical Exclusive OR instead of Addition.

61

C.10 ORA – OR FROM ADDRESS

Description:

Each bit in the Accumulator is processed in a logical OR with its
corresponding bit in the memory byte addressed by the operand and the
result placed into the Accumulator.

Instruction:

Inst Code Operand Description
ORA 46 Y Logical OR

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ORA 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

Execute cycles:

Gate operation is as per ADC instruction. Only change to execution is to
Execute 2 where ALU is set for Logical OR instead of Addition.

62

C.11 AND – AND FROM ADDRESS

Description:

Each bit in the Accumulator is processed in a logical AND with its
corresponding bit in the memory byte addressed by the operand and the
result placed into the Accumulator.

Instruction:

Inst Code Operand Description
AND 47 Y Logical AND

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

AND 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

Execute cycles:

Gate operation is as per ADC instruction. Only change to execution is to
Execute 2 where ALU is set for Logical AND instead of Addition.

63

C.12 ADI – ADD WITH CARRY IMMEDIATE

Description:

The instruction adds the content of the Accumulator, Carry and the data read
from the operand. The result is placed into the Accumulator and the Carry flag
is updated.

Instruction:

Inst Code Operand Description
ADI 48 Y Add with Carry, Immediate

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ADI 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Set ALU for Addition
 Open Gates I and E
 Read memory (Operand and

Accumulator data sent to ALU)
 Close Gates

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gate A (ALU result is sent
to Accumulator)

 Close Gate

64

C.13 SBI – SUBTRACT WITH CARRY IMMEDIATE

Description:

The instruction subtracts with Carry the data read from the operand from the
content of the Accumulator. The result is placed into the Accumulator and the
Carry flag is updated.

Instruction:

Inst Code Operand Description
SBI 49 Y Subtract with Carry, Immediate

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

SBI 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

Execute cycles:

Gate operation is as per ADI instruction. Only change to execution is to
Execute 1 where ALU is set for Subtraction instead of Addition.

65

C.14 XOI – EXCLUSIVE OR IMMEDIATE

Description:

Each bit in the Accumulator is processed in a logical Exclusive OR with its
corresponding bit in the operand and the result placed into the Accumulator.

Instruction:

Inst Code Operand Description
XOI 4D Y Logical Exclusive OR, Immediate

Microcode:

Execute cycles:

Gate operation is as per ADI instruction. Only change to execution is to
Execute 1 where ALU is set for Logical Exclusive OR instead of Addition.

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

XOI 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

66

C.15 ORI – OR IMMEDIATE

Description:

Each bit in the Accumulator is processed in a logical OR with its
corresponding bit in the operand and the result placed into the Accumulator.

Instruction:

Inst Code Operand Description
ORI 4E Y Logical OR, Immediate

Microcode:

Execute cycles:

Gate operation is as per ADI instruction. Only change to execution is to
Execute 1 where ALU is set for Logical OR instead of Addition.

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ORI 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

67

C.16 ANI – AND IMMEDIATE

Description:

Each bit in the Accumulator is processed in a logical AND with its
corresponding bit in the operand and the result placed into the Accumulator.

Instruction:

Inst Code Operand Description
ANI 4F Y Logical AND, Immediate

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ANI 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

Execute cycles:

Gate operation is as per ADI instruction. Only change to execution is to
Execute 1 where ALU is set for Logical AND instead of Addition.

68

C.17 SHR – SHIFT ACCUMULATOR RIGHT

Description:

Each bit value in the Accumulator is shifted to the next lower significant bit.
The Least Significant Bit value is moved to the Carry flag. The Most
Significant Bit value is set to zero.

Instruction:

Inst Code Operand Description
SHR 60 N Shift Accumulator bits right

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

SHR 2 I, F
PC=PC+1

Int Op

Execute cycle:

b7 b0
0

Accumulator Carry flag

Execute 1

 Internal operation (no memory
access)

 Accumulator operation:
o Carry flag set to b0
o b0 set to b1
o b1 set to b2
o b2 set to b3
o b3 set to b4
o b4 set to b5
o b5 set to b6
o b6 set to b7
o b7 set to 0

69

C.18 SHL – SHIFT ACCUMULATOR LEFT

Description:

Each bit value in the Accumulator is shifted to the next higher significant bit.
The Most Significant Bit value is moved to the Carry flag. The Least
Significant Bit value is set to zero.

Instruction:

Inst Code Operand Description
SHL 61 N Shift Accumulator bits left

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

SHL 2 I, F
PC=PC+1

Int Op

Execute cycle:

b7 b0
0

Carry flag Accumulator

Execute 1

 Internal operation (no memory
access)

 Accumulator operation:
o Carry flag set to b7
o b7 set to b6
o b6 set to b5
o b5 set to b4
o b4 set to b3
o b3 set to b2
o b2 set to b1
o b1 set to b0
o b0 set to 0

70

C.19 ROR –ROTATE ACCUMULATOR RIGHT

Description:

Each bit value in the Accumulator is shifted to the next lower significant bit.
The Most Significant Bit value is set to the value in the Carry flag.
Subsequently, the Least Significant Bit value is moved to the Carry flag.

Instruction:

Inst Code Operand Description
ROR 62 N Rotate Accumulator bits right

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ROR 2 I, F
PC=PC+1

Int Op

Execute cycle:

b7 b0
Accumulator Carry flag

Execute 1

 Internal operation (no memory
access)

 Accumulator operation:
o b0 saved
o b0 set to b1
o b1 set to b2
o b2 set to b3
o b3 set to b4
o b4 set to b5
o b5 set to b6
o b6 set to b7
o b7 set to Carry flag
o Carry flag set to saved

b0

71

C.20 ROL – ROTATE ACCUMULATOR LEFT

Description:

Each bit value in the Accumulator is shifted to the next higher significant bit.
The Least Significant Bit value is set to the value in the Carry flag.
Subsequently, the Most Significant Bit value is moved to the Carry flag.

Instruction:

Inst Code Operand Description
ROL 63 N Rotate Accumulator bits left

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

ROL 2 I, F
PC=PC+1

Int Op

Execute cycle:

b7 b0
Carry flag Accumulator

Execute 1

 Internal operation (no memory
access)

 Accumulator operation:
o b7 saved
o b7 set to b6
o b6 set to b5
o b5 set to b4
o b4 set to b3
o b3 set to b2
o b2 set to b1
o b1 set to b0
o b0 set to Carry flag
o Carry flag set to saved

b7

72

C.21 CLC – CLEAR CARRY FLAG TO “0”

Description:

The instruction sets the Carry flag to zero.

Instruction:

Inst Code Operand Description
CLC 80 N Clear the Carry flag

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

CLC 2 I, F
PC=PC+1

Int Op

Execute cycle:

The Carry flag is set to 0.

73

C.22 SEC – SET CARRY FLAG TO “1”

Description:

The instruction sets the Carry flag to one.

Instruction:

Inst Code Operand Description
SEC 81 N Set the Carry flag

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

SEC 2 I, F
PC=PC+1

Int Op

Execute cycle:

The Carry flag is set to 1.

74

C.23 BCS – BRANCH IF CARRY FLAG SET

Description:

This is a branch instruction that sets the Program Counter to the address
given in the operand, but only if the Carry flag is one.

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

BCS 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Query: Is the Carry flag value
one?

 If so open Gate H (Address
Register copied into Program
Counter) otherwise do nothing

 Close Gate

Inst Code Operand Description
BCS A0 Y Branch if Carry flag is set

75

C.24 BCN – BRANCH IF CARRY FLAG NOT SET

Description:

This is a branch instruction that sets the Program Counter to the address
given in the operand, but only if the Carry flag is zero.

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

BCN 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

Execute cycles:

Gate operation is as per BCS instruction. Only change to execution is to
Execute 2 where query is changed to Query: Is the Carry flag value zero?

Inst Code Operand Description
BCN A1 Y Branch if Carry flag is not set

76

C.25 BEZ – BRANCH IF ACCUMULATOR IS ZERO

Description:

This is a branch instruction that sets the Program Counter to the address
given in the operand, but only if the Zero flag is one (i.e. the Accumulator
value is zero).

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

BEZ 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

Execute cycles:

Gate operation is as per BCS instruction. Only change to execution is to
Execute 2 where query is changed to Query: Is the Zero flag value one?

Inst Code Operand Description
BEZ A2 Y Branch if Zero flag is set

77

C.26 BNZ – BRANCH IF ACCUMULATOR IS NOT ZERO

Description:

This is a branch instruction that sets the Program Counter to the address
given in the operand, but only if the Zero flag is zero (i.e. the Accumulator
value is not zero).

Instruction:

Microcode:

Execute cycles:

Gate operation is as per BCS instruction. Only change to execution is to
Execute 2 where query is changed to Query: Is the Zero flag value zero?

Inst Code Operand Description
BNZ A3 Y Branch if Zero flag is not set

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

BNZ 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

78

C.27 BRA – BRANCH ALWAYS

Description:

This is a branch instruction that sets the Program Counter to the address
given in the operand.

Instruction:

Microcode:

Inst MC Fetch Execute
1

Execute
2

Execute
3

Execute
4

BRA 3 I, F
PC=PC+1

I, G H
Int Op

Execute cycles:

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 1

 Open Gates I and G
 Read memory (Instruction

operand is written into Address
Register)

 Close Gates
 Increment Program Counter

B I

C
E A H

E G J

F

PROCESSOR

Data Address

MEMORY

IR ABR

Acc PC

ALU AR

Execute 2

 Open Gate H (Address Register
copied into Program Counter)

 Close Gate

Inst Code Operand Description
BRA A4 Y Branch to operand address

79

C.28 MICROCODE SUMMARY

The instructions and their microcode are summarised in Table 18.

Inst Code MC Fetch Execute
1

Execute
2

Execute
3

Execute 4

HLT 00 2 I, F
LDI 10 2 I, F

PC=PC+1
I, B
PC=PC+1

LDA 11 3 I, F
PC=PC+1

I, G
PC=PC+1

J, B

LDX 13 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, B

STA 20 3 I, F
PC=PC+1

I, G
PC=PC+1

J, C

STX 22 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, C

ADC 40 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

SBC 41 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

XOR 45 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

ORA 46 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

AND 47 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

ADI 48 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

SBI 49 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

XOI 4D 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

ORI 4E 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

ANI 4F 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

SHR 60 2 I, F
PC=PC+1

Int Op

SHL 61 2 I, F
PC=PC+1

Int Op

ROR 62 2 I, F
PC=PC+1

Int Op

ROL 63 2 I, F
PC=PC+1

Int Op

CLC 80 2 I, F
PC=PC+1

Int Op

SEC 81 2 I, F
PC=PC+1

Int Op

BCS A0 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

BCN A1 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

BEZ A2 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

BNZ A3 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

BRA A4 3 I, F
PC=PC+1

I, G H
Int Op

Table 18 Simple Processor Instruction Set microcode summary

80

	1 Introduction
	2 Electrical Representation of Data
	3 Registers and Memory
	3.1 Address Bus Register
	3.2 Accumulator and ALU
	3.3 Instruction Register
	3.4 Memory Access Registers

	4 Simple Processor
	4.1 A Basic Operation
	4.2 Halt Instruction

	5 Arithmetic Logic Unit
	5.1 Addition
	5.2 Subtraction
	5.3 Logical Operators
	5.4 Instruction Codes
	5.5 ALU Layout

	6 Accumulator Operations
	6.1 Shifting
	6.2 Rotating
	6.3 Instruction Codes

	7 Branching and Programming
	7.1 A Simple Branch
	7.2 A Note On Programming

	8 Concluding Remarks
	A. Appendix: Binary Numbers
	B. Appendix: Hexadecimal Numbers
	C. Appendix: Instruction Set for the Simple Processor
	C.1 HLT – HALT
	C.2 LDI – LOAD IMMEDIATE
	C.3 LDA – LOAD ACCUMULATOR FROM ADDRESS
	C.4 LDX – LOAD ACCUMULATOR FROM INDIRECT ADDRESS
	C.5 STA – STORE ACCUMULATOR TO ADDRESS
	C.6 STX – STORE ACCUMULATOR TO INDIRECT ADDRESS
	C.7 ADC – ADD WITH CARRY FROM ADDRESS
	C.8 SBC – SUBTRACT WITH CARRY FROM ADDRESS
	C.9 XOR – EXCLUSIVE OR FROM ADDRESS
	C.10 ORA – OR FROM ADDRESS
	C.11 AND – AND FROM ADDRESS
	C.12 ADI – ADD WITH CARRY IMMEDIATE
	C.13 SBI – SUBTRACT WITH CARRY IMMEDIATE
	C.14 XOI – EXCLUSIVE OR IMMEDIATE
	C.15 ORI – OR IMMEDIATE
	C.16 ANI – AND IMMEDIATE
	C.17 SHR – SHIFT ACCUMULATOR RIGHT
	C.18 SHL – SHIFT ACCUMULATOR LEFT
	C.19 ROR –ROTATE ACCUMULATOR RIGHT
	C.20 ROL – ROTATE ACCUMULATOR LEFT
	C.21 CLC – CLEAR CARRY FLAG TO “0”
	C.22 SEC – SET CARRY FLAG TO “1”
	C.23 BCS – BRANCH IF CARRY FLAG SET
	C.24 BCN – BRANCH IF CARRY FLAG NOT SET
	C.25 BEZ – BRANCH IF ACCUMULATOR IS ZERO
	C.26 BNZ – BRANCH IF ACCUMULATOR IS NOT ZERO
	C.27 BRA – BRANCH ALWAYS
	C.28 MICROCODE SUMMARY

