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1 Introduction

Part 1 introduces digital processing from first principles. The descriptions give
an insight into the fundamentals of a computer processor. This part provides a
more detailed description of some of the key features of the processor and
includes some additional capability typical of commercial devices. The result
is a more practical version of the simple processor.

This part consists of three sections:
 Logical and arithmetic processing
 The simple processor control system
 Additional processor features

The  Logic  and  Arithmetic  section  introduces  electronic  logic  and  provides
more detail on the functionality of the ALU. Also described are examples of
multiple-byte arithmetic, multiplication and division.

The  Control  section  describes  the  implementation  of  the  logic  driving  the
simple processor processing control in its simulated electronic form (Book 3).
The detail of the circuit is provided in Book 3.

The final section introduces some additional features that have typically been
available on a real processor. These are described here by adding them to
the simple processor. The features introduced are in relation to the specific
implementation  in  Part  1  and  there  are  many  other  ways  they  can  be
implemented. There are better ways almost certainly, but the intention here is
to keep the overview consistent and accessible to a general readership.

This  part  concludes  with  an  overview  of  the  constraints  on  processor
performance  and  real-estate  leading  to  the  two  major  types  of  processor
architectures available today.
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2 Logic and Arithmetic

The ALU performs arithmetic and logical operations. However, the ALU does
not directly perform multiplication and division. This section describes in more
detail operations which deliver the logical and arithmetic functional features
including multiplication and division.

At the heart of digital processing devices such as the ALU are electronic logic
circuits and the section begins with a summary of these.

2.1 Logic

Part 1 describes in general terms the AND, OR and Exclusive OR functions of
the ALU. Table 1 shows the output for each variant containing two inputs (A
and B), the notation used and the electronic symbols for circuits which deliver
the logic. The circuits shown form the basis of digital electronics.

Type Output Notation Symbol
A B OUT

AND 0 0 0 A . B
0 1 0
1 0 0
1 1 1

OR 0 0 0 A + B
0 1 1
1 0 1
1 1 1

Exclusive OR 0 0 0 A  B
0 1 1
1 0 1
1 1 0

Inputs

Table 1 Logic AND, OR, Exclusive OR Circuits

Another important electronic logic circuit is the inverter or “NOT”. The circuit
consists of one input and one output where the output is the inverted form of
the input and is shown in Table 2.

Type Output Notation Symbol
OUT

NOT 1
01

IN
Input

0

Table 2 Not Circuit
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In addition the logic circuits “NAND” (NOT AND) and “NOR” (NOT OR) are
shown in  Table 3.  These circuits  are logically  similar  to  their  counterparts
(AND and OR respectively)  but  with  inverted outputs i.e.  deliver  “negative
logic”. The inverted sense of the output in Table 2 and Table 3 is indicated by
placing a “bar” over the notation.

Type Output Notation Symbol
A B OUT

NAND 0 0 1 A . B
0 1 1
1 0 1
1 1 0

NOR 0 0 1 A + B
0 1 0
1 0 0
1 1 0

Inputs

Table 3 Logic NAND, NOR Circuits

The  circuits  in  Table  3 are  important  in  the  design  of  digital  electronics
because combinations of the circuits can deliver both positive and negative
logical outcomes. The AND and OR circuits in  Table 1 only deliver positive
logic.  Furthermore,  fewer  components  are  required  to  implement  negative
logic circuits. A practical AND or OR circuit is a NAND or NOR followed by a
NOT. All the circuits described appear in the electronic design described in
Book 3.

Arrangements of NAND, NOR and NOT gates create devices referred to as
“flip-flops”. These devices can hold bits of data indefinitely and are commonly
used  as  data  latches,  registers  and  counters.  They  are  examples  of  the
electronic devices used to hold the byte information referred to in Part 1.

An example (known as a “D flip-flop”) is shown in Figure 1. The bit on “D” (i.e.
zero or one) appears at Q when “T” one. When T goes to zero, Q remains
unchanged regardless of D. That is, it  “remembers” the value. Qbar is the
opposite of Q (i.e.  NOT Q). Book 3 Part  1 refers further to flip-flops in its
Appendix.

Figure 1 NAND gates arranged as a D flip-flop
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The notation used to specify logic forms the basis of Boolean algebra, which
is  a  technique  used  in  the  design  of  electronic  logic.  Some  fundamental
concepts of Boolean algebra are included in the Appendix to this part.

The ALU Logic  Unit  can perform the  AND,  OR and Exclusive  OR logical
operations described for two input bytes  (accumulator and memory).  Each
corresponding bit within the input bytes is processed according to the logical
function  instigated  by  the  instruction  and  the  output  placed  back  into  the
Accumulator. Figure 2 illustrates the configuration of the logic within the ALU.

The Logic Control function switches the eight bit logic gates between AND,
OR and Exclusive OR functions. The inputs are shown as “A” and “B” and the
actual  data originates from the Accumulator and Memory.  Logic Control  is
decoded from the Instruction Register bits b0 to b2 (described in section 3).

Figure 2 ALU Logic processing arrangement
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2.2 Simple Arithmetic

2.2.1 Addition
This section describes how the ALU performs the addition of bytes. This is
best illustrated through the example additions shown in Table 4.

Decimal Binary (in bytes)

+
3
5 +

0 0 0 0 0 0 1 1 
0 0 0 0 0 1 0 1  

8 0 0 0 0 1 0 0 0

+
21
23 +

0 0 0 1 0 1 0 1  
0 0 0 1 0 1 1 1  

44 0 0 1 0 1 1 0 0

Table 4 Examples of binary addition

Consideration of  how the binary digits  add together  leads to  the following
observation

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 and carry 1 over to the next higher binary power (next significant
bit).

Therefore, for each bit within a byte, the output of the addition consists of the
“Sum” and a “Carry” which can be represented in Table 5. The Carry is added
to the next higher significant bit in the addition.

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 5 Addition of A and B

This type of table (showing outputs for given inputs) is referred to as a “truth
table”.

To a computer this is a logical operation and no real concept of addition in
terms of quantities is actually performed here. The Sum is the Exclusive OR
of A and B, whilst Carry is A AND B. It follows that the logic which delivers this
output can be drawn as Figure 3.
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Figure 3 Logic diagram for Half Adder

This circuit is known as a “Half Adder”. A “Full Adder” must also add-in any
Carry from the next lower significant bit-addition. The truth table for this is
shown in Table 6.

Inputs Outputs
A B Carry-in Sum Carry-out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 6 Truth Table for Full Adder

The full adder is delivered using the logic gates shown in Figure 4. This circuit
consists  of  two half-adders  connected one after  another  (A,  B added first
followed by Carry-in) and the Carry-out is an OR function of the Carry from
the two half adders.

Figure 4 Logic diagram for Full Adder

Finally,  the  byte-adder  consists  of  eight  full-adders  wired  with  successive
Carry-out connected to the next higher bit Carry-in. A byte Carry-in is supplied
to bit A0/B0 and Carry-out is delivered from bit A7/B7. See Figure 5.
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The ALU Logic Control sets the logic to addition and connects each Carry
through to the next more significant bit of the byte. The ALU Logic Control is
decoded from the Instruction Register. The byte-level “Carry-in” and “Carry-
out” entities support multiple-byte arithmetic (described in section 2.3).

In the simple processor of Book 1, Carry-in is always added in the ALU during
addition.  This  is  common in  real  machines,  although some have  included
special add instructions which do not include Carry-in. This means that for the
simple processor at the start of addition it is important that the Carry flag is not
set. Instructions are provided for the simple processor to control the Carry flag
so it can be set to zero at the start of addition.

Figure 5 Addition Logic arrangement
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2.2.2 Subtraction
Addition is purely a logical operation in the ALU. There is no equivalent logic
which  provides  subtraction  in  the  usual  sense.  To  achieve  subtraction,  a
technique called “complementing” is performed, which achieves subtraction
by using addition.

Before describing how this works in the ALU, the idea of complementing is
outlined using more familiar decimal numbers. The complement of a number
is  the  difference  between  that  number  and  the  number  base,  which  for
decimal  is  10  (there are ten different  numbers,  0  to  9).  For  example,  the
complement of 3 is 7.

Consider the following sum, which leads to a positive answer

8 – 3 = 5

If, instead of subtracting 3 from 8, the number base complement of 3 (i.e. 7) is
added to 8, then the result is 15. 

8 + 7 = 15

This may appear to be the wrong answer. However, the sum has overflowed
the number base, which should be removed leaving 5. This may be more
easily understood from the diagram in Figure 6.

15
14 7
13
12
11
10
9 7
8
7 8 8
6
5
4
3
2 3 3
1
0

A B C D
Figure 6 Complementing with positive result

The two numbers in the sum are represented in the diagram by “blocks” in
column A (8) and column B (3). The number base is shown by the horizontal
line.

Column C shows the number in B and its complement in the lighter grey. The
complement is given by the difference between the number and the number
base (10). So the complement of B shown in C is 7.
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The complement of B is added to A as shown in D. The quantity exceeding
the number base is the complement of A subtracted from the complement of
B. That is, in effect, 2 is subtracted from 7 leaving 5. Therefore, subtraction
can be achieved by adding the complement of the number to be subtracted to
the  starting  number  and  removing  the  number  base,  since  this  has
overflowed.

Now consider an example where the answer is negative.

2 – 8 = – 6

The complement of 8 is 2 and the sum using the complement is

2 + 2 = 4

And the diagram is as shown in Figure 7.

15
14
13
12
11
10
9 2
8
7 8 8
6
5
4
3 2
2
1 2 2
0

A B C D
Figure 7 Complementing with negative result

This time in D, the sum does not exceed the number base.

In interpreting this result, it is noted that by adding the complement of B to A,
the complement of  A is effectively reduced in D by the complement of  B.
Since the  difference between A and B is  also  the difference between  the
complements of A and B, the correct answer is the complement of D. That is,
the  result  (4)  is  the  complement  of  the  answer  (6).  Therefore,  when  the
number base is not exceeded (i.e. no overflow) the answer is negative and is
in the complement form.

The complement of 4 is 6 and the answer is – 6. 

Of course, the trick here is to find the complement of a number. This does not
seem any easier using a base number system like decimal.  However,  the
system is ideal for a machine using binary.
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In  the  binary  system  of  numbers,  complementing  a  number  is  very
straightforward. If every bit in any byte value is inverted (i.e. a 0 becomes a 1
and vice versa) and added to the original byte value, then the answer is FF
(hex) or 255 (decimal). An example is shown in Figure 8.

128 64 32 16 8 4 2 1 Hex

0 0 1 0 1 1 0 0 2C

Invert bits 1 1 0 1 0 0 1 1 D3

Add 1 1 1 1 1 1 1 1 FF

Figure 8 Inverting a byte and adding

The inverted number is known as the “Ones-complement”. So the difference
between a byte number value and its number base (256) can be found by
inverting the bits (the ones-complement which gives the difference to 255)
and adding 1,  which  gives  the complement  needed for  subtraction  and is
known as the “Twos-complement”. 

A more mathematical description shows that for a binary number X which has
an inverted form X’:

X + X’ = (Number Base) – 1 

Where Number Base is a power of two (i.e. it depends upon the number of
binary bits. A single binary bit is base two. For eight bits together the base is
256). Therefore:

(Number base) – X = X’ + 1

When the ALU Logic Control is set to subtract by decoding the Instruction
Register, its circuits invert the binary number to be subtracted and add it to
the starting number. In the simple processor in Book 1, the extra 1 is added
by setting the Carry flag. This is common in real machines although other
techniques may also be used. Therefore, at the beginning of subtraction the
Carry flag is set for the simple processor.

For example, the diagram Figure 9 shows the sum 16 – 6 
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A 0 0 0 1 0 0 0 0 16

B 0 0 0 0 0 1 1 0 6

1 1 1 1 1 0 0 1

1

1 0 0 0 0 1 0 1 0 10

Invert

Carry

Add

Carry

Figure 9 ALU addition positive result

Note that the addition overflows and the carry flag is set, indicating a positive
answer. This is the same mechanism as the overflow in the decimal example
before.

For the negative case, 6 – 16, the Carry flag at the end of the subtraction is
not set and the answer is negative and in complement form. See Figure 10.

A 0 0 0 0 0 1 1 0 6

B 0 0 0 1 0 0 0 0 16

1 1 1 0 1 1 1 1

1

0 1 1 1 1 0 1 1 0

Invert

Carry

Add

Carry

Figure 10 ALU addition negative result

The result of the subtraction from the ALU is F6 with the Carry flag reset to 0,
since  there  is  no  overflow.  Inverting  this  result  and  adding  1  gives  the
expected result 10, which should be interpreted as -10. See Figure 11.
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1 1 1 1 0 1 1 0

0 0 0 0 1 0 0 1

0 0 0 0 1 0 1 0 10

Invert

Add 1

Figure 11 Calculating value from the complement

The numbers held in bytes do not intrinsically signal if the number is positive
or negative. The sign of the number is given by the context the arithmetic
finds  during  the  calculation  (i.e.  the  result  shown  by  the  Carry  flag).  The
programmer records the sign using a chosen convention. For example, the
high bit of a byte is sometimes used and this is set to one or zero as required
in the program.

For the case where both A and B are the same value the subtraction answer
is of course zero. The Carry flag is set indicating that zero is considered to be
a positive value.

Finally, another way of thinking about the binary complement is to recognise
the manner  by  which  the  twos-complement  number  is  represented  in  this
system. For binary numbers in bytes, the values assigned to the results of the
twos-complement additions are as shown in Table 7.

Table 7 Positive integer and complement ranges

The positive numbers run to 255 but effectively negative numbers run to 256.
This is because 0 is positive only. So the binary complement of a number is
found by inverting the binary bits and adding 1.

Hex Binary Decimal
Carry set Carry reset

00
01
02
…
FE
FF

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

0
1
2

254
255

– 256
– 255
– 254

– 2
– 1 
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2.3 Multiple-Byte Addition and Subtraction

2.3.1 Addition
For example: Add 511 to 255

The numbers can be represented over two bytes (16 binary bits) arranged
such that there is a higher value byte (top eight bits of number) and lower
value byte (bottom eight bits of number).

The two numbers are held in two pairs of bytes (Figure 12).:
511 is 01FF (hex)
255 is 00FF (hex)

Hi Byte Low Byte Hi Byte Low Byte
511 00000001 11111111 01 FF
255 00000000 11111111 00 FF

Binary Hex

Figure 12 Representation of larger numbers

Therefore, multiple-byte addition is required and works as shown in Figure 13.

Decimal Hex Decimal Hex
Low Accum. 255 FF 254 FE
Byte Memory 255 FF

Carry

Decimal Hex Decimal Hex
High Accum. 1 01 2 02
Byte Memory 0 00

Carry

ALU
add

1 0

ALU
add

0 1

Figure 13 Adding larger numbers with overflow

When the low bytes are added (FF + FF Hex) the result is FE (Hex) with an
overflow. The Carry flag is set and this is included in the addition of the high
bytes (01 + 00 + Carry)  with  the result  02. The answer is therefore 02FE
(Hex).

For  those unfamiliar  with  hexadecimal,  the two numbers 255 when added
make 510. An overflow occurs, which is signalled by Carry and takes 256 into
the higher sum. This leaves 510 – 256 = 254 in the lower byte. The high byte
is 2 x 256 = 512 (decimal) and so 02FE (hex) is 512 + 254 = 766 (decimal).

On completion of the sum the carry flag is zero, indicating no further Carry
forward. If the Carry flag is set after the second byte addition, then a third byte
is required and 65,536 is carried forward (2 to the power 16) and so on.

An  example  program for  the  simple  processor  is  shown  in  Table  8.  The
Instruction Codes and labels are described in Book 2 Part 1.
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Label Ins Op
XH EQ 1
XL EQ 255
YH EQ 0
YL EQ 255

CLC
LDI XL
ADI YL
STA ANSL
LDI XH
ADI YH
STA ANSH
HLT

ANSH &
ANSL &

Table 8 Program demonstrating multiple-byte addition

2.3.2 Subtraction
When performing multiple-byte  subtraction,  it  is  possible  for  partial  results
(that is the subtraction of lower bytes) to be less than zero. For example, 514
–  255  means  the  subtraction  of  two-byte  hex  numbers  0202  and  00FF
respectively. Clearly, for the low bytes, 02 – FF is less than zero (the result is
03). This is dealt with through the use of the Carry flag.

At the beginning of subtraction the Carry flag is set to one. This is to achieve
twos-complementing but can also be considered as indicating to the ALU that
the number to be subtracted is positive.

If the result of a subtraction is less than zero, the ALU “borrows” the value in
the Carry flag which effectively increases the smaller value (by 256) making
the sum in this example (effectively) 258 – 255 resulting in 3. The Carry flag is
reset to zero if this occurs (it has been “borrowed”) and the ALU accounts for
this on the next higher byte subtraction (Figure 14).

Of course, what  is actually occurring is that the FF is twos-complemented
(resulting in 01) and added to 02. The Carry flag is not set. This amounts to
the same result.
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Decimal Hex Decimal Hex
Low Accum. 2 02 3 03
Byte Memory 255 FF

Carry

Decimal Hex Decimal Hex
High Accum. 2 02 1 01
Byte Memory 0 00

Carry

ALU
sub

1 0

ALU
sub

0 1

Figure 14 Subtracting larger numbers with borrow

On  the  second  (Hi  Byte)  subtraction  the  ALU  subtracts  one  from  the
Accumulator value to “repay” the Carry flag. So the result of the subtraction is:
1 x 256 (High byte) plus 3 (Low byte) equals 259 (decimal) or 0103 (hex). The
Carry flag is set to one which indicates a positive result.

Again, the mechanism behind this is that the number to be subtracted is twos-
complemented. However, the Carry is zero and thus 0 is complemented to
FF, which is added to 2 resulting in 1 with the Carry flag set. 

If  the Carry flag is set to zero at the end of subtraction, then the result is
negative and in the complement form over both bytes.

The  example  program  in  Table  9 reformats  negative  answers  from  the
complement to show them in the more usual format. The final state of the
Carry flag indicates if the answer is positive (set to one) or negative (set to
zero). Care has been taken with the Carry flag in the design of this program.
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Label Ins Op
XH EQ 2
XL EQ 2
YH EQ 0
YL EQ 255

SEC
LDI XL
SBI YL
STA ANSL
LDI XH
SBI YH
STA ANSH
BCS here
LDA ANSL
XOI #FF
ADI #01
STA ANSL
LDA ANSH
XOI #FF
ADI #00
STA ANSH
CLC

here HLT
ANSH &
ANSL &

Table 9 Program demonstrating multiple-byte subtraction

2.4 Multiplication

Multiplication can be achieved using electronic hardware that delivers results
at great speed. However, such devices are beyond the scope of these books.
Generally,  if  multiplication  is  required  then  an  algorithm  (i.e.  a  logical
sequence of instructions forming part of a program) is developed to deliver the
feature. Two examples are shown here.

Multiplication is further complicated by rules surrounding the signs of the two
numbers (i.e. if the signs are the same the answer is positive, if the signs are
different the answer is negative). It is for the programmer to deal with sign in a
manner which fits the application.

A simple form of multiplication is the addition of the multiplicand (first number)
to itself a number of times as given by the multiplier (second number). For
example, a count could be set to the value of the multiplier and decremented
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each time the  addition occurs.  When the  count  reaches zero the  addition
would cease. An example algorithm (32 bytes) is shown in Table 10.

Label Ins Op
x EQ 12
y EQ 5

LDI #00
STA answer
LDI x
BEZ end
LDI y
STA count
BEZ end

loop LDA answer
CLC
ADI x
STA answer
LDA count
SEC
SBI #01
STA count
BNZ loop

end LDA answer
HLT

answer &
count &

Table 10 Program demonstrating multiplication by repeated addition

With the values chosen (12 x 5) the program executes in 148 cycles. The loop
executes the number of times given by the multiplier (in this case 5). The loop
is 25 cycles so it is to be expected that a multiplier of 21 (the maximum before
overflow) would take the cycle count to 548 cycles. So the program would
take nearly four times longer to run.

Another  algorithm  is  based  on  halving  and  doubling.  The  multiplicand  is
doubled and the multiplier halved with partial results added. This technique is
well suited to binary systems since halving and doubling is easily achieved
(shift right and shift left respectively).

Table 11 shows the multiplication as a series of shifts and adds in a similar
manner to drawing a long multiplication sum. The binary multiplicand is shifted
left  (multiplied  by  2)  as  each  more  significant  bit  is  of  the  multiplier  is
processed. Only the “1” bits in the multiplier add any value to the sum.

If a “1” bit in the multiplicand is shifted out of the Accumulator then the sum
overflows  (answer  is  greater  than  255).  Further  higher  bytes  would  be
required to support multiple-byte multiplication.
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Decimal Binary Hex

12 0 0 0 0 1 1 0 0 0C
5 0 0 0 0 0 1 0 1 05

x 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0
0

Sum  60 0 0 1 1 1 1 0 0 3C

Table 11 Binary multiplication

The “1” bits in the multiplier are tested by a right shift (divide by 2) and testing
the  Carry  flag  which  will  be  set  to  the  value  of  each  bit  in  turn.  The
multiplicand is shifted to the left (multiplied by 2) for each shift in the multiplier.
The results are added to the sum. An example algorithm (48 bytes) is shown
in Table 12.

This program consists of 316 cycles for the values 12 x 5 and 328 for 12 x 21.
The algorithm is more consistent with its processing and much more efficient
with larger calculations than the first example.
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Label Ins Op
x EQ 12
y EQ 5

LDI #00
STA answer
LDI x
STA mcand
BEZ end
LDI y
STA multip
BEZ end
LDI #08
CLC

loop STA count
LDA multip
SHR
STA multip
BCN here
CLC
LDA mcand
ADC answer
STA answer

here LDA mcand
SHL
STA mcand
LDA count
SEC
SBI #01
BNZ loop
LDA answer
HLT

answer &
mcand &
multip &
count &

Table 12 Program demonstrating multiplication by halving and doubling

2.5 Division

Division is a little trickier than the other arithmetic forms since the answer
generally consists of two parts: a quotient and remainder. Furthermore, the
calculation is complicated by the sign of the numbers (as multiplication) and
by the possibility that the divisor is zero (which would produce an error since
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the  answer  is  indeterminate).  The  program in  Table  13 demonstrates  the
additional complexity.

Like  multiplication,  many  algorithms  have  been  developed  to  deal  with
arithmetic division. Since number theory is somewhat beyond the scope of
these  books,  only  the  simple  example  of  multiple  divisor  subtraction  is
included  here.  The  algorithm  does  give  a  feel  to  the  exception  handling
required for division. Error detection provides a mechanism for recovery but
simply halts the program in this example.

The quotient is contained in the memory location “answer” and the remainder
in “rem”.

Label Ins Op
x EQ 12
y EQ 5

LDI #00
STA rem
STA answer
LDI y
BEZ error
LDI x
BEZ end
STA rem

loop SEC
SBI y
BCN end
STA rem
LDA answer
CLC
ADI #01
STA answer
LDA rem
BNZ loop

end HLT
error HLT
rem &
answer &

Table 13 Program demonstrating complexity of division
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3 The Control System

The processor  operates  by  a  sequence  of  instructions  being  fetched  and
executed as shown in Part 1. The procedure mimics a clock: Fetch; Execute
(tick;  tock).  In  fact,  the  electronic  control  systems driving  the  process are
indeed driven by a repeating electronic pulse referred to as the “clock”. Every
transition of the clock leads to a furthering of the program execution. 

After a processor reset the machine is placed in the Fetch state by the system
electronics. When it starts to run, the processor enters the fetch cycle and on
completion of the cycle sets the Execute state. The last action of the final
execute cycle is to set the Fetch state and the cycles repeat.

There  are  many  ways  that  the  control  system  can  be  designed  and
implemented.  This  section  describes  the  method  chosen  for  the
implementation of the simple processor in Book 3 as an illustration of the kind
of approach typical in machines of this type.

3.1 Fetch State

The Fetch state is always the same and involves opening Gates I and F and
reading memory. Following this the Program Counter is incremented.

Before the Execute state is invoked it is necessary to determine the number of
machine cycles there are to execute. The Machine Code could indicate the
figure directly by including the count in its coding. However,  that approach
would  restrict  the  availability  of  codes.  A  better  approach  is  to  use  the
Machine Code as an index into a look-up table which indicates the number of
cycles, and provides an effective way of processing the execute cycles too. 

The Instruction Register (IR) output code forms the high eight-bits of an 11 bit
address  into  a  special  look-up  memory  (not  the  same  as  the  processor
memory) where the microcode is stored (Figure 15). The bottom three bits of
the look-up are set by a counter, which is zero in the Fetch state. This means
that the output of the IR (i.e. the instruction Machine Code) addresses blocks
of eight bytes in the Microcode ROM (read-only memory). Each byte within an
eight-byte block is addressed by the counter. An 11 bit address ROM provides
2048  bytes  of  look-up  memory.  Although  considerably  fewer  bytes  are
required a ROM is an inexpensive and simple solution to the design.

During a Fetch cycle the IR code is loaded into the IR and decodes the low
byte of the eight-byte block in the look-up (Counter output is zero). Gates I
and F are explicitly decoded by the system electronics during the Fetch cycle.
The look-up ROM output is eight bits arranged as shown in Table 14.
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Fetch State:
b7 b6 b5 b4 b3 b2 b1 b0
x Inc PC x x x No. of MC for instruction
x – Not used during the fetch cycle.

Table 14 ROM output byte - Fetch

Bits b0 to b2 are loaded into the counter. At the end of the Fetch cycle the
counter is set to the number of cycles to be executed, but the output of the
counter is not enabled (the bits a0 to a2 in  Figure 15 remain zero). In this
design the maximum number of cycles possible is seven.

a0
Counter

a1

a2

Microcode
a3

ROM
a4

a5
Instruction

a6
Register

a7

a8

a9

a10

Control Output

Figure 15 Machine Code look-up to blocks of 8 bytes in ROM

The  only  other  bit  used  in  the  eight-bit  output  is  b6  which  controls  the
increment of the PC. This bit is set for all Fetch Microcode ROM locations
except  for  the  HLT  instruction,  which  provides  the  mechanism  of  the
instruction (i.e. the PC never moves beyond the instruction).

On completion of the Fetch cycle (Gates I and F closed) the Execute state is
enabled which enables the output of the counter.

3.2  Execute State

At the beginning of the execute cycle the IR and counter decode a byte in the
Microcode ROM. For an instruction consisting of three machine cycles (e.g.
LDA) the byte pointed to is two bytes above the byte read during the fetch
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cycle (two more cycles to run). In this design the counter is decremented after
every cycle, including fetch.

For  the Execute  state the Microcode ROM output  is  defined as  shown in
Table 15.

Execute State:
b7 b6 b5 b4 b3 b2 b1 b0
Int Op Inc PC x Gate I Gate J Decode Gates
x – Not used during the execute cycle. Note that b5 is effectively “spare”.

Table 15 ROM output byte - Execute

Bits b0 to b2 “Decode Gates” values select the Gate to be opened as shown
in Table 16.

Value Gate opened
0 None
1 B
2 G
3 E
4 C
5 A
6 H
7 None

Table 16 Decode Gates

Only Gates I and J can be opened at the same time as B to H. The opening of
Gate H may be subject to conditional processing.

For each Execute cycle, the Gates to be opened are identified (all others are
closed), whether the Memory is to be accessed (b7 not set), and whether the
Program Counter is to be incremented (b6 set). Selecting Gate C implies a
memory write and all other selections are memory reads.

However,  this is not the complete story.  Some instructions open the same
sequences  of  gates,  memory  access  etc  but  process  the  data  differently.
Specifically,  the four instruction types shown in  Table 17 contain groups of
instructions which have the same ROM output bytes:

ALU Accumulator Carry Branch
Add
Subtract
AND
OR
Exclusive OR

Shift Right
Shift Left
Rotate Right
Rotate Left

Clear Carry
Set Carry

Branch if Carry Set
Branch if Carry not set
Branch if Zero
Branch if not Zero
Branch Unconditionally

Table 17 Instruction types with same ROM outputs 
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Therefore,  the  instruction  must  also  decode the  instruction  type  and what
specific processing is to be performed.

For the ALU there are two groups of instructions: one group using immediate
data; one group using addressed data. This means that there are two groups
of ALU instructions with sets of gate sequences which slightly differ from each
other.

This is all  achieved by further decoding of the instruction in the Instruction
Register.  There are many ways  to achieve this and a simple illustration is
described here.

The Machine Code consists of eight bits. Here the most-significant three bits
are  used  to  decode  the  type  of  instruction and  is  used  to  identify  the
instruction  group.  The  low  three  bits  are  used  to  identify  the  type  of
processing to  be  performed.  The  values  picked  are  arbitrary  but  (with
experience) take into account that electronic circuits are required to realise
the functions and are designed to minimise complexity and cost.

The chosen codes are shown in Table 18.

Not all instruction types need to be decoded in this way. Only those instruction
types requiring bespoke processing need to decode the Instruction Register
further.  The  decoded  instruction  type  enables  or  disables  the  processing
electronics in the ALU, Accumulator, Carry flag and Program Counter update
(Branch) as appropriate. The processing type is decoded as required directly
by linking b0 to b2 to each of the register electronics.
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IR Code b7 b6 b5 b2 b1 b0
None 0 0 0 x x x
Future 0 0 1 not used x x x
ALU 0 1 0 Add 0 0 0
ALU 0 1 0 Sub 0 0 1
ALU 0 1 0 not used 0 1 0
ALU 0 1 0 not used 0 1 1
ALU 0 1 0 not used 1 0 0
ALU 0 1 0 Xor 1 0 1
ALU 0 1 0 Or 1 1 0
ALU 0 1 0 And 1 1 1
Accumulator 0 1 1 Shift Right 0 0 0
Accumulator 0 1 1 Shift Left 0 0 1
Accumulator 0 1 1 Rotate Right 0 1 0
Accumulator 0 1 1 Rotate Left 0 1 1
Accumulator 0 1 1 not used 1 0 0
Accumulator 0 1 1 not used 1 0 1
Accumulator 0 1 1 not used 1 1 0
Accumulator 0 1 1 not used 1 1 1
Carry 1 0 0 Clear 0 0 0
Carry 1 0 0 Set 0 0 1
Carry 1 0 0 not used 0 1 0
Carry 1 0 0 not used 0 1 1
Carry 1 0 0 not used 1 0 0
Carry 1 0 0 not used 1 0 1
Carry 1 0 0 not used 1 1 0
Carry 1 0 0 not used 1 1 1
Branch 1 0 1 Carry Set 0 0 0
Branch 1 0 1 Carry Not Set 0 0 1
Branch 1 0 1 Equals Zero 0 1 0
Branch 1 0 1 Not Equals Zero 0 1 1
Branch 1 0 1 Always 1 0 0
Branch 1 0 1 not used 1 0 1
Branch 1 0 1 not used 1 1 0
Branch 1 0 1 not used 1 1 1
Future 1 1 0 not used x x x
Future 1 1 1 not used x x x

Table 18 Instruction type and processing

The corresponding Instruction Codes are as  Table 19, which shows all  the
bits  in  the  instruction  byte  (in  hex).  The ALU instructions include memory
operations that operate on immediate or addressed data.
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Function Instruction Hi 4 bits Low 4 bits
Halt HLT 0 0
Read
Memory

LDI
LDA
LDX

1 0
1
3

Write
Memory

STA
STX

2 0
2

ALU ADC
SBC
XOR
ORA
AND
ADI
SBI
XOI
ORI
ANI

4 0
1
5
6
7
8
9
D
E
F

Accumulator SHR
SHL
ROR
ROL

6 0
1
2
3

Carry CLC
SEC

8 0
1

Branch BCS
BCN
BEZ
BNZ
BRA

A 0
1
2
3
4

Table 19 Instruction Codes

There are many other possible codes (since only 27 are used out  of  256
possibilities).  All  other  codes are illegal  and could cause the processor  to
malfunction if the design does not prevent this. The first byte of the unused
code ROM groups could be set  to resemble a HLT. Alternatively,  a  ROM
containing all zeroes in unused bytes effectively halts operation.

The  decoded  instruction  determines  the  type  of  processing  over  all  the
execute cycles.

As each execute cycle completes the counter is decremented to point to the
next  (lower)  Microcode  ROM  address  and  hence  the  set  of  Gates  and
activities to occur  for  the cycle.  When the counter  is  zero,  the Execute is
complete and the machine is placed back into the Fetch state.

In conclusion, the complete controller in the execute cycle looks like  Figure
16. The connection back to the counter is shown but is not enabled during
execute.
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0
1 B

3 2 G
a0 to 3 E

Counter 8 4 C
a1 Decoder 5 A

d0 6 H
a2 7

d1
Microcode

b0 a3 d2
ROM

b1 a4 d3 J

b2 a5 d4 I
Instruction

b3 a6 d5
Register

b4 a7 d6 Inc PC

b5 a8 d7 Int Op

b6 a9

b7 a10

Control 6

Control 5

Control 4

0
Control 3 1

3 2 ALU
Control 2 to 3 ACCUM

8 4 CARRY
Control 1 Decoder 5 BRANCH

6
7

Figure 16 Full decode of the Instruction Register

Figure 16 omits the controlling electronics for the Fetch/Execute states and
control  of  the  decoders.  The  circuit  is  described  in  Book  3  Part  2.  To
summarise: The three most significant bits of the IR code (labelled Control 1,
2 and 3 in the figure) decode the instruction type in the processor. The three
least significant bits (labelled Control 4, 5 and 6 in the figure) are passed to
each of  the register  circuits  (ALU,  ACCUM, CARRY and BRANCH) which
decode the operation directly. These are derived from Table 18.

The write-memory instructions (20 and 22 hex) set b7b6b5 to 001 in Table 18
which decodes to output 1 on the 3-to-8 Decoder in  Figure 16. This design
means that conceptual future expansion on output 1 is unlikely.

The  instructions  and  their  microcode  are  shown  in  Table  20.  Increment
Program  Counter  is  depicted  as  “PC=PC+1”.  “Int  Op”  represents  Internal
Operation and disables processor access to memory in the simulator Book 3.
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Inst. Code MC Fetch Execute 1 Execute 2 Execute 3 Execute 4

HLT 00 1 I, F     
LDI 10 2 I, F

PC=PC+1
I, B
PC=PC+1

   

LDA 11 3 I, F
PC=PC+1

I, G
PC=PC+1

J, B   

LDX 13 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, B

STA 20 3 I, F
PC=PC+1

I, G
PC=PC+1

J, C   

STX 22 5 I, F
PC=PC+1

I, G
PC=PC+1

J G J, C

ADC 40 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

 

SBC 41 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

 

XOR 45 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

 

ORA 46 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

 

AND 47 4 I, F
PC=PC+1

I, G
PC=PC+1

J, E A
Int Op

 

ADI 48 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

  

SBI 49 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

  

XOI 4D 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

  

ORI 4E 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

  

ANI 4F 3 I, F
PC=PC+1

I, E
PC=PC+1

A
Int Op

  

SHR 60 2 I, F
PC=PC+1

Int Op    

SHL 61 2 I, F
PC=PC+1

Int Op    

ROR 62 2 I, F
PC=PC+1

Int Op    

ROL 63 2 I, F
PC=PC+1

Int Op    

CLC 80 2 I, F
PC=PC+1

Int Op    

SEC 81 2 I, F
PC=PC+1

Int Op    

BCS A0 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

  

BCN A1 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

  

BEZ A2 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

  

BNZ A3 3 I, F
PC=PC+1

I, G
PC=PC+1

H
Int Op

  

BRA A4 3 I, F
PC=PC+1

I, G H
Int Op

  

Table 20 Complete Simple Processor Instruction Code Microcode

It follows that the map of the Microcode ROM is as Figure 17. The map only
includes address lines that contain values other than zero. All lines not shown
contain all zero-filled bytes in this design.

The Machine Code maps to the addresses shown by shifting the code three
bits left (the low bits addressed by the counter). For example, LDI is Machine
Code 10 becomes 80 and maps to 080 in Figure 17. LDA maps to 088. 
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In the ROM, bit b4 is set for all the fetch cycles. This bit is not used during
fetch but controls Gate I during the execute cycle. However, the emulator in
Book 2 uses this bit to control Gate I always and was used to generate this
table. It has no impact on the simulator design (Book 3).

Figure 17 Complete ROM Micro Code

Only 81 bytes out of the 2,048 bytes of the ROM are programmed. All other
bytes are zero.

The values in the map appear in the implementation in Book 3. During the
fetch  cycle  the  counter  is  loaded  with  the  count  of  the  cycles  for  the
instruction. This is because in the implementation the counter decrements the
count on every machine cycle including the fetch.

Further description of the processor control system can be found in Book 3.
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4 More Advanced Processor Features

The  simple  processor  contains  the  features  required  to  perform  digital
computation. However, the simple architecture (developed here to be easily
understood)  does not  necessarily  deliver  efficient  and effective  computing.
Furthermore,  its  limited  memory capacity  does not  make for  a  particularly
practical  machine.  This  section  shows  how  some  additional  processor
features can enhance the processing.

Note that even the enhanced machine described here is still far short of the
capability of modern processors. Modern processors typically contain 64-bit
data  and  address  buses  (an  astronomic  memory  capability)  and  greatly
enhanced  processing  speed  techniques.  Section  5 briefly  discusses  the
development of the modern processor.

The  simple  processor  is  enhanced  by  providing  16-bit  address  space  for
memory and four features which are typically used in commercial processors:

 Data address indexing
 Subroutine handling
 Interrupt processing
 Input/output device handling

Each  of  the  features  is  described  in  turn  by  adding  them  to  the  simple
processor until all are present in the final upgraded processor.

4.1 16-bit Address Space

Providing a 16-bit Address Bus Register expands the memory capability to
65536 bytes, which is typical of small commercial 8-bit data processors. For
the  simple  processor  in  Book  1  this  means  the  accompanying  registers
Program Counter and Address Register also need to be 16-bit registers.

The other impacts of such an upgrade are as follows.
 Operand addresses need to be 16 bits, which can be accomplished by

moving  to  two-byte  address  operands  where  required.  This  means
instructions may contain no, one-byte or two-byte operands.

 Indirect  addressing  obtains  an  address  from  data  memory  and  so
needs two eight-bit read operations. The current simple implementation
will not suffice.

The two-byte address operand can be achieved by providing an extra G gate
into the Address Register so that the High and Low 8-bits of the address can
be  handled separately.  The  microcode  can  be  altered  to  handle  an  extra
machine cycle and appropriate Gate operation.

Indirect addressing requires a buffer register for the first of the two bytes read
which  will  be  placed  in  the  Address  Register.  The  Address  Register  also
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needs the capability to increment (similar to the Program Counter) so that the
second address byte can be read in this mode. The increment is controlled by
the microcode. 

The figure shows the updated processor.  The 16-bit registers are marked.
Gates I and J are 16 bits. All other registers remain 8-bit.

16
B I

C
E A H

Gh 16
Gl J

E L

K

16
F

PROCESSOR

MEMORY AddressData

CONTROL
Instruction Register Address Bus Register

Indirect Data L

Carry Arithmetic Logic Unit

Zero Accumulator Program Counter

Address Register

Figure 18 Simple Processor with 16-bit address space

The function of the additional Gates when open is shown in Table 21.

Gh Data  on  the  data  bus  is  placed  in  the  high  8  bits  of  the  Address
Register.

Gl Data on the data bus is placed in the low 8 bits of the Address Register.
K Data on the data bus is placed in the Indirect Data L register.
L Data in the Indirect Data L register is placed in the low 8 bits of the

Address Register.

Table 21 additional Gates for 16 bit addresses

Instructions which provide an address are three bytes.  For example,  Load
Accumulator from Address (LDA) is of the form

LDA Address

where Address is two 8-bit bytes. If the memory address is, say, 0FFF, then
the machine code could be either of the following

 11 0F FF – The 16 bit address is specified as high byte followed by low
byte (and known as “Big-endian”).

 11 FF 0F – The 16 bit address is specified as low byte followed by high
byte (and known as “Little-endian”).
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Little-endian has been common in small  8-bit  machines and is used here.
Figure 18 shows the buffer register Indirect Data L (eight bits) collecting the
low byte of the address. The differences, characteristics and history of each
endian type can be found in Wikipedia.

4.1.1 LDA, STA – direct addressing
Loading the Address Register with a two-byte operand requires an additional
machine cycle. Figure 19 and Figure 20 show the two cycles required to load
the  Address  Register  after  which  the  data  in  memory  is  loaded  into  the
Accumulator by opening Gates J and B as before. 

Storing the Accumulator to memory follows the same addressing procedures
but writes the Accumulator to memory by opening Gate C as before.

16
B I

C
E A H

Gh 16
Gl J

E L

K

16
F

PROCESSOR

MEMORY Address

Instruction Register Address Bus Register

Data

Carry Arithmetic Logic Unit

Indirect Data L

CONTROL

Zero Accumulator Program Counter

Address Register

Figure 19 Loading Low Byte of address into Address Register

In the execute cycle Figure 19 Gates I and Gl are opened and data is loaded
into  the  low  address  of  the  Address  Register.  The  Program  Counter  is
incremented.

In the execute cycle Figure 20 Gates I and Gh are opened and data is loaded
into  the  high  address  of  the  Address  Register.  The  Program  Counter  is
incremented.
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PROCESSOR
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Instruction Register Address Bus Register

Data

Carry Arithmetic Logic Unit

Indirect Data L

CONTROL

Zero Accumulator Program Counter

Address Register

Figure 20 Loading High Byte of address into Address Register

4.1.2 LDX, STX – indirect addressing
The Address Register is loaded with the 16-bit address of the data address in
the manner described in the previous section. However, the data address is
also 16 bits and occupies the byte addressed and the byte following. Both
bytes need to be loaded into the Address Register so that the location of the
data is identified.
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PROCESSOR
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Instruction Register Address Bus Register

Data

Carry Arithmetic Logic Unit

Indirect Data L

CONTROL

Zero Accumulator Program Counter

Address Register

Figure 21 Loading the low byte data address into the buffer

The first read operation places the low address byte into the “Indirect Data L”
register (i.e. the low byte of the data address) by opening Gates J and K
(Figure 21).  The Address Register  is  incremented by Control  in  a  manner
similar to the increment of the Program Counter.

Subsequently, Gate J is opened and places the location of the high byte of the
indirect address in the Address Bus Register (Figure 22). At this point the
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high-byte of the address of the data to load is addressed by the Address Bus
Register and the low-byte is contained in Indirect Data L. 

The required data address is now placed in the Address Register by opening
Gate Gh (placing the data from memory into the high byte of the Address
Register) and Gate L (placing the Indirect Data L content into the low byte of
the Address Register). Gate Gl is not used in this part of the process (Figure
23).

With the required address loaded into the Address Register the required LDA
or STA as seen in Part 1 now occurs.

16
B I

C
E A H

Gh 16
Gl J

E L

K

16
F

PROCESSOR
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CONTROL

Zero Accumulator Program Counter

Address Register

Figure 22 Placing the address of the high byte of the data address into the Address
Bus Register
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Figure 23 Placing the data address into the Address Register
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4.2 Data Address Indexing

Much  of  what  is  required  of  processors  involves  moving  information.  A
smartphone  connecting  to  a  web-site  reads  information  from the  site  and
displays it on the smartphone screen (a kind of write-only memory) with some
formatting procedures. In each case, data making up the information may be
held in consecutive bytes of memory.

Therefore, many tasks required of the processor involve consecutive bytes of
memory,  for example to move copy or find data. To do this efficiently it  is
useful for the processor to contain some means of moving along the bytes of
a section of memory. One way of achieving this is via index registers which
contain  a  counter  that  is  added  to  a  base  address  held  in  the  Address
Register. The count is incremented or decremented thus providing a movable
pointer into memory.

The  processor  is  enhanced  to  include  index  registers.  The  index  register
content is added to the starting memory address of the data to be processed.
Two index registers (each eight bits) are added to the simple processor in this
example.

Figure 24 shows the addition of index registers to the 16-bit address machine.
Gate J is divided into two in order to control the high byte and low byte of the
address separately.
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Index y
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Carry Arithmetic Logic Unit

Zero Accumulator Program Counter

Index x Address Register

Figure 24 Index Registers added

The function of the additional Gates when open is shown in Table 22.
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Jh The high 8 bits of the Address Register are placed into the high 8 bits of
the Address Bus Register. 

Jl The low 8 bits of the Address Register are placed into the low 8 bits of
the Address Bus Register. 

M Data from the Accumulator is placed in the identified Index Register.
N Data from the identified Index Register is placed in the Accumulator.
O The output of the ALU is placed into the low 8 bits of the Address Bus

Register.
P The data in the index register referenced in the Instruction Code and

low 8 bits of the Address Register are placed in the ALU set to ADD.

Table 22 Additional Gates for Indexed addressing

The index registers are eight bits since the ALU is eight bits. This limits the
indexing technique to 256 bytes of memory in this design.

The eight bit registers “Index x” and “Index y” can be read and written to via
the Accumulator through Gates N and M respectively.  Each index may be
incremented or decremented through the issue of the appropriate Instruction
Code (e.g.  INX or  DEX for  the  x  index).  Indexed addressing  requires the
instruction to  specify  which  index is  to be used.  For  example,  to load the
accumulator with data using index x the Instruction Code could be 

LDA,x address – where address consists of two-bytes and LDA,x represents
“load accumulator from address using index x”.

4.2.1 Direct Addressing
The actual address which is placed in the Address Bus Register is calculated
from  the  low  byte  of  the  Address  Register  added  to  the  content  of  the
specified index register. The Carry flag is not affected.

If the addition overflows in the ALU then the high byte of the Address Bus
Register  is  incremented  (requiring  additional  electronics).  Gate  P  on  the
Address Register only passes the low 8 bits. Following the addition (and any
increment), Gate Jh (not Jl) and Gate O (which only provides the low 8 bits)
are opened and the indexed address passes to the Address Bus Register.

An example is shown in the figure. The index x contains 02 (hex) Instruction
Code is LDA,x #FFE0
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CONTROL
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more rows…

Address Bus Register

Figure 25 Final execute cycle of LDA,x address FFE0 loaded into Address Register

Possible Instruction Codes supporting indexed direct addressing are shown in
Table 23. 

Ins Operand Feature
LDA,x Y Load Acc index register x
LDA,y Y Load Acc index register y
STA,x Y Store Acc index register x
STA,y Y Store Acc index register y
INX N Increment index x
INY N Increment index y
DEX N Decrement index x
DEY N Decrement index y
ATX N Data in Accumulator to index x
ATY N Data in Accumulator to index y
XTA N Data in index x to Accumulator
YTA N Data in index y to Accumulator

Table 23 Indexed direct addressing Instruction Codes

Indexed  addressing  can  also  be  applied  to  the  ALU  instructions,  but  the
additional Instruction Codes are omitted here for brevity.

To demonstrate the effectiveness of indexed addressing a simple program is
described which copies a number of bytes across memory. 

For the direct addressing codes available to the simple processor (indirect
addressing covered in section 4.2.2), an algorithm that fulfils the requirement
of  the  program  is  shown  in  Table  24.  Each  consecutive  source  and
destination byte is marked with consecutive numbers.
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LDA Source1
STA Dest1
LDA Source2
STA Dest2
LDA Source3
STA Dest3
…

Table 24 Program for copying data

The LDA/STA statements are repeated until all the required data are copied.
Clearly, for large amounts of data this requires many statements.

The same requirement is achieved using index addressing by the program in
Table 25. This algorithm is complete and simply requires the start addresses
for the source and destination memory locations and the number of bytes to
be copied to be supplied in the constants “source”, “dest” and “num”.

LDI #00
ATX

loop LDA,x source
STA,x dest
INX
XTA
XOI num
BNZ loop
HLT

Table 25 Program for copying data using indexing

4.2.2 Indirect Addressing
Indirect addressing is used where the addressed data is itself an address to
the required data. This is particularly useful for calculated addresses.

Two techniques can be applied to indexing indirect addresses:
 The instruction address loads an address which is indexed to load the

data. This is represented here as LDX,x or LDX,y (and equivalent STX)
and referred to as indirect indexed.

 The instruction address is indexed and the result loads the address to
the  data.  This  is  represented  here  as  LDX,(x)  or  LDX,(y)  (and
equivalent STX) and referred to as indexed indirect.

Table 26 summarises the indirect addressing instructions using indexes. All
the instructions include an operand.
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Ins Feature
LDX,x Load Acc indirect index x
LDX,y Load Acc indirect index y
LDX,(x) Load Acc index indirect x
LDX,(y) Load Acc index indirect y
STX,x Store Acc indirect index x
STX,y Store Acc indirect index y
STX,(x) Store Acc index indirect x
STX,(y) Store Acc index indirect y

Table 26 Indirect addressing Instruction Codes

Each technique is illustrated in the following figures, since the indirect nature
can be tricky to grasp.

Indirect Indexed

The Address Register is loaded with the address of the data as described for
the  LDX  and  STX  Instructions  in  section  4.1.2.  The  final  cycle  of  the
instructions acts upon the data in the manner illustrated in Figure 26.

In Figure 26 the Instruction is LDX,x #FFE0 and the index x contains 02 (hex).
The address stored at FFE0 is FFF0 (stored as low byte followed by high
byte). The index is added to the address in Address Register to derive the
final address to the data. Control  opens Gates P, Jh, O and B and reads
memory.
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Index x 02 Address Register FFF0

Zero Accumulator 03 Program Counter

Figure 26 Final execute cycle of LDX,x #FFE0

The program in  Table 27 provides a general purpose data copying routine
without using index registers. The source address, destination address and
number of bytes to copy are provided in set memory locations. The routine
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requires a workspace (“temp”) where the required end-point is calculated for
reference. The same routine can be achieved using an index and is shown in
Table 28.

It  can be  seen  that  the  indexing  technique  provides  a  more  efficient  and
higher performance program.

The  routines  described  have  a  structure  which  lends  itself  to  the  idea  of
subroutines described in section 4.3.

LDA dest
CLC
ADC num
STA temp

loop LDX source
STX dest
LDA source
CLC
ADI #01
STA source
LDA dest
ADI #01
STA dest
XOR temp
BNZ loop
HLT

source &
dest &
num &
temp &

Table 27 General copy routine without indexing

LDI #00
ATX

loop LDX,x source
STX,x dest
INX
XTA
XOR num
BNZ loop
HLT

source &
dest &
num &

Table 28 General copy routine with indexing
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Indexed Indirect

The instruction address is indexed to find the data address. Following the load
of the instruction address (i.e. the operand) the execution cycles continue as
follows.

In  Figure 27 the Instruction is LDX,(x) #FFE0 and the index x contains 02
(hex). Control opens Gates P, Jh, O and K and reads memory.

16
B I

C
M N E A H

Gh 16 Jh
Gl Jl

P L

P K

E

O

16
F

PROCESSOR

0 1 2 3 4 5 6 7 8 9 A B C D E F
000
001

F0 FF F8 FF FFE
01 02 03 04 05 09 0A 0B 0C 0D FFF

more rows…

F8Indirect Data L

CONTROL
Instruction Register Address Bus Register FFE2

Index y

Carry Arithmetic Logic Unit E2

Index x 02 Address Register FFE0

Zero Accumulator Program Counter

Figure 27 Execute cycle for LDX,(x) following load of operand FFE0

The  Address  Register  value  is  indexed  to  find  the  location  of  the  data
address. The resulting address is FFE2. The content forms low byte of the
data address and is loaded into Indirect Data L (Figure 27).

42



16
B I

C
M N E A H

Gh 16 Jh
Gl Jl

P L

P K

E

O

16
F

PROCESSOR
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F0 FF F8 FF FFE
01 02 03 04 05 09 0A 0B 0C 0D FFF

more rows…

CONTROL
Instruction Register Address Bus Register FFE3

Index y

Indirect Data L F8

Carry Arithmetic Logic Unit E3

Index x 02 Address Register FFE1

Zero Accumulator Program Counter

Figure 28 Setting the high byte address of the high byte data address

In the next  cycle  (Figure 28) the Address Register is incremented so that
when Control opens Gates P, Jh and O the location of the high byte of the
data address is placed in the Address Bus Register. The following execute
cycle  Figure 29 loads the address of the data into the Address register by
opening Gates Gh and L.
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F

PROCESSOR

0 1 2 3 4 5 6 7 8 9 A B C D E F
000
001

F0 FF F8 FF FFE
01 02 03 04 05 09 0A 0B 0C 0D FFF

more rows…

CONTROL
Instruction Register Address Bus Register FFE3

Index y

Indirect Data L F8

Carry Arithmetic Logic Unit E3

Index x 02 Address Register FFF8

Zero Accumulator Program Counter

Figure 29 Setting the data address into the Address Register
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The final execute cycle loads the data addressed in the Address Register.
Control opens Gates Jh, Jl and B and reads memory (Figure 30). A similar
process stores the Accumulator in memory for STX,(x).
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PROCESSOR

0 1 2 3 4 5 6 7 8 9 A B C D E F
000
001

F0 FF F8 FF FFE
01 02 03 04 05 09 0A 0B 0C 0D FFF

more rows…

CONTROL
Instruction Register Address Bus Register FFF8

Index y

Indirect Data L F8

Carry Arithmetic Logic Unit E3

Index x 02 Address Register FFF8

Zero Accumulator 09 Program Counter

Figure 30 Final execute cycle of LDX,(x) #FFE0

The major use of indexed indirect addressing is for finding a particular data
item from a list or table of item addresses.

4.3 Subroutines

Programs often need to perform certain tasks repeatedly. For example, move
data, copy data, find, delete etc. The task may operate with different data but
will  essentially  consist  of  the  same  set  of  instructions.  Clearly,  this  could
account for a large amount  of  the Instruction Code in a program. A more
code-efficient approach is for the program to contain one copy of the task and
“call” it from other parts of the program that require the task, passing the data
pertinent to the calling program. This is the subroutine.

Programs usually consist of a main routine (often a loop) and a number of
subroutines. Parameters are passed to the subroutine to qualify the actual
requirement where necessary.  The essential  character of  the subroutine is
that its code is somewhere else and not inline with the current program code
flow. Therefore, when a subroutine is called the program jumps to the location
of the subroutine Instructions Codes, executes the codes and on completion
jumps back to  the Instruction Code following the call.  This is achieved by
using an additional register “Stack Pointer” (Figure 31) and instructions as
described in the following.
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Stack Pointer

Carry Arithmetic Logic Unit

Zero Accumulator Program Counter

Index x Address Register

Figure 31 Stack Pointer and saving Program Counter added

The initial  location of the Stack Pointer is set via the Accumulator through
Gate R and can be monitored through Gate S.

The function of the additional Gates when open is as shown in Table 29.

Qh Places the high 8 bits of the Program Counter on the data bus.
Ql Places the low 8 bits of the Program Counter on the data bus.
R The Accumulator is placed in the Stack Pointer.
S The Stack Pointer is placed in the Accumulator.
T The Stack  Pointer  is  placed into  the  low 8  bits  of  the  Address Bus

Register.

Table 29 Additional Gates for Subroutines

The  Stack  Pointer  is  an  8-bit  register  providing  the  low  byte  of  a  16-bit
address for the location of the “Stack”. The high-byte of the stack could be
provided by an extended register. In this example the stack is fixed at address
FFxx  for  simplicity.  (Some real  processors  do something  similar).  That  is,
when Gate T is opened the high 8 bits to the Address Bus Register are set to
FF (hex).

Stack memory operates by setting the pointer to an address, storing register
data in the addressed memory byte and subsequently decrementing the stack
pointer to the next address byte below. This is called a data “push” onto the
stack. A data “pull” from the stack operates in the opposite way. The Stack
Pointer is incremented and the data at the stack address is loaded into the
identified register. The register here is the Program Counter (which requires
two stack operations to push the 16 bits).
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A subroutine is called using a branch instruction known as “Jump Subroutine”.
The operand of the instruction contains the address at which the subroutine
Machine  Code  is  present.  This  is  loaded  into  the  Address  Register.  The
Program  Counter  is  incremented  to  point  to  the  next  instruction.  Before
making the jump (i.e. opening Gate H), the current value in the PC (i.e. the
address of the next instruction) is saved on the stack. This involves two push
operations to store the low byte and high byte of the PC through Gates Ql and
Qh respectively. Opening the Q Gates sets the memory for a data write.

The six-cycle sequence for Jump Subroutine is as follows:

Fetch Execute 1 Execute 2 Execute 3 Execute 4 Execute 5
I, F 
inc PC

I, Gl 
inc PC

I, Gh
inc PC

T, Ql 
dec stack

T, Qh 
dec stack

H

After the subroutine has completed its task the program flow returns to the
point  after  the  call.  This  is  achieved  using  the  instruction  “Return  from
Subroutine”, which has no operand. The instruction restores the PC from the
stack and branches.

The four-cycle sequence for Return from Subroutine is as follows:

Fetch Execute 1 Execute 2 Execute 3
I, F inc stack 

T, Gh
inc stack 
T, Gl

H

The fetch cycle may or may not increment the Program Counter (may not
means  HLT  is  less  unique)  since  there  is  no  operand  and  the  Program
Counter is over-written anyway.

Example instructions supporting subroutine processing are shown in  Table
30.

Ins Operand Feature
JSR Y Jump to subroutine
RTS N Return from subroutine
TAS N Data  in  Accumulator  to  Stack

Pointer
TSA N Data  in  stack  Pointer  to

Accumulator

Table 30 Subroutine Instruction Codes

4.4 Interrupts

A product  comprising a processor very often interacts with  another device
asynchronously.  That is, the device signals the processor system of some
event that needs some attentive processing but there is very little prior notice
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of when the processing is required. The required processing may be time-
critical.

It may be possible sometimes for the processor to wait for the event by polling
the device. For example in a processing loop by waiting for the event to occur,
be  detected  and  branch  out  of  the  loop.  However,  this  is  a  waste  of
processing potential and often is not practical, especially if the event occurring
is infrequent compared to processing time.

Instead,  the  processor  is  enhanced  to  provide  “interrupt”  processing.  An
external event is signalled in hardware to the processor which can respond
very quickly to the event and begin the necessary processing. The following
shows a typical example of how this can be achieved.

The processor is further enhanced in Figure 32 by providing a hardware input
where the need for attention by an event is signalled. The signal is monitored
and initially processed in hardware by the Interrupt Request controller. This
also determines if an interrupt is allowed to be processed immediately. This
feature is required because sometimes the processor may be completing a
critical  task  so  is  unable  to  go  to  interrupt  processing  immediately.  The
interrupt is held-over until the processor completes the critical task whereupon
the  interrupt  can  occur.  Instructions  are  provided  to  enable  and  disable
interrupt processing.

An additional register is required: “Interrupt Vector” which holds the indirect
address of the interrupt program.
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Carry

Address Register

Stack Pointer

Index x
Index y

Interrupt 
Request

CONTROL
Instruction Register

Zero Accumulator

Interrupt Vector

Indirect Data L

Data

Arithmetic Logic Unit

Address Bus Register

Figure 32 Interrupt Vector added
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The additional Gates when open perform the functions shown in Table 31.

W Data from the Accumulator is placed in the Interrupt Vector.
X The Interrupt Vector is placed into the low 8 bits of the Address Bus

Register.

Table 31 Additional Gates for Interrupt processing

The Interrupt Vector register contains the low-byte address of memory holding
the  address  of  the  “interrupt  routine”,  which  is  the  program  to  which
processing begins when the processor responds to the interrupt event. In this
machine  the  vector  is  set-up  through  the  Accumulator.  Some  practical
processors pick-up the vector from fixed memory space.

When an  interrupt  is  accepted  the  processor  completes  execution  of  the
current  instruction  and  performs  interrupt  processing.  An  interrupt
automatically  disables  further  interrupts  from  occurring  until  the  program
explicitly re-enables them. The vector for the interrupt routine is contained at
address FFxx,  where  xx  is  set  by the  Interrupt  Vector.  The memory  byte
pointed to by the vector is loaded into the Address Register low byte. The
Interrupt  Vector is incremented and the next  byte  loaded into the Address
Register high byte. The Interrupt Vector is decremented to restore its value for
the next interrupt.

Interrupt  processing  breaks  the  current  program thread  and  jumps  to  the
location  given  by  the  interrupt  vector.  When  the  interrupt  processing  is
completed,  the  program  returns  to  continue  the  thread.  To  do  this,  the
interrupt processing saves the PC to the stack. The return from the interrupt
can occur by restoring the PC from the stack.

However, this is not sufficient. Because the interrupt can occur anywhere in
the process flow (for  example between a LDA and STA)  it  is  essential  to
preserve any information in registers (or memory if applicable) that could be
impacted in subsequent instructions. For the simple processor this means any
of  the  Accumulator,  flags  (Zero  and  Carry)  and  either  or  both  the  index
registers must be saved and restored along with the PC.

The hardware could be arranged to save and restore all the required states in
the  processor.  However,  the  implementation  here  keeps  hardware  to  a
minimum and places requirements upon the interrupt program. Furthermore, it
is  most  efficient  to  save  only  the  registers  that  are  used  by  the  interrupt
program.

The hardware saves and restores the PC. However, the Accumulator (with
Zero flag), Carry flag and index registers (if used) are saved and restored as
the first  and last  activities  of  the  interrupt  program.  This  can be achieved
through  the  instructions  “Save  Accumulator  to  Stack”  (STS)  and  “Load
Accumulator  from Stack”  (LDS).  The  instructions  have  no  operand.  Other
items are  saved  and restored through the  Accumulator.  The Carry flag  is
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tested with a conditional branch and a suitable marker placed on the stack to
determine if the flag is set or reset before the interrupt returns.

The cycles for the instructions are as follows.

STS: LDS:
Fetch Execute 1 Fetch Execute 1
I, F
inc PC

T, C
dec stack

I, F
inc PC

inc stack
T, B

The cycles processing the interrupt are special in that they are effectively a
set of cycles between instructions in the program. This is illustrated in Figure
33.

Fetch Execute Fetch Execute Interrupt Fetch Execute …

Figure 33 Additional cycles inserted by interrupt processing

The additional interrupt cycles are as follows

Interrupt 1 Interrupt 2 Interrupt 3 Interrupt 4 Interrupt 5
X, Gl 
inc IV

X, Gh 
dec IV

T, Ql 
dec Stack

T, Qh 
dec Stack

H

When the  interrupt  program is  complete  it  signals  a  return  to  processing
where  the  interrupt  occurred.  This  is  accomplished  with  a  “Return-from-
Interrupt” instruction (e.g. Instruction Code RTI), which has no operand. The
sequence for this is as follows.

Fetch Execute 1 Execute 2 Execute 3
I, F inc stack 

T, Gh
inc stack 
T, Gl

H

As with the return from subroutine instruction, the fetch cycle may or may not
increment the Program Counter (may not means HLT is less unique) since
there is no operand and the Program Counter is over-written anyway.

The instructions required to support interrupt processing include a means to
enable and disable interrupt processing (so that critical tasks can be protected
against interruption). Examples are shown in Table 32.

Ins Operand Feature
ENI N Enable interrupt processing
DIS N Disable interrupt processing 
RTI N Return from Interrupt processing
STS N Store Accumulator to Stack
LDS N Load Accumulator from Stack

Table 32 Interrupt Instruction Codes
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On power-up and hardware reset the processor would start processing with
interrupts disabled.

4.5 Input/Output Devices

The processor described in these books performs basic computations and
memory manipulation. A real processor system also interacts with input/output
devices in order to communicate with the outside world. Examples of devices
include  communication  ports,  real-time  clocks,  data  storage  devices,
keyboards and displays.

Interaction between the processor  and a device requires the device to  be
identified, the direction of information flow established and data transferred.
The direction of flow may be intrinsic (e.g. a keyboard would always be input
data and a display output data). The read/write function of the processor is
used to determine the direction of data. Data is transferred on the Data Bus. 

The processor  needs to  access particular  devices.  Therefore,  a  means to
identify devices is required.

The simple processor could be enhanced to include specific i/o ports (in the
form  of  registers)  which  would  provide  direct  control  lines  to  decoding
electronics. The decoders would enable the specified device or devices.

A  simpler  approach  requiring  no  hardware  enhancement  is  to  map  the
devices  into  memory.  Some  commercial  processors  have  taken  this
approach.  The  electronic  decoders  for  memory  could  divide  the  available
memory space between memory and devices. An example based upon the
enhanced processor here which can map up to 16 devices is shown in Figure
34.
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Index x Address Register
Index y
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Carry Arithmetic Logic Unit
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Interrupt Vector

Interrupt 
Request

CONTROL
Instruction Register Address Bus Register

Figure 34 Memory-mapped input/output devices

This approach requires the location of the Stack Pointer and Interrupt Vector
to be more flexible than previously described. 

Some commercial processors have defined device instructions and signal the
instruction type (memory or  i/o)  during the machine cycles.  By specifically
signalling device and memory operations the memory space is preserved for
programs and data.

There are many other ways input/output devices could be decoded according
to the imagination of the designer.

51



5 Concluding Remarks

Book  1  Part  1  introduces  a  simple  processor  and  instruction  set.  The
expansion in this part resembles processors developed in the past. Although
some  small  systems  may  require  such  low-level  design  there  are  fewer
practical applications today.

Simple  processors  developed  in  the  1970s  followed  a  development  path
which added larger data and address capability along with additional features
(e.g. direct memory manipulation also known as “read-modify-write”, device
input/output,  hardware  multiplier).  Many of  the  operations  rely  upon  direct
interaction of the processor with its memory, as demonstrated by the simple
processor in this Book.

In  the  1980s  a  complementary  development  path  explored  an  alternative
approach. There was recognition that processor chip real-estate is limited and
there is a trade-off between hardware enhancements and performing the most
commonly used instructions as quickly as possible. Two approaches to more
complex functionality are

 Processor  hardware  can  be  further  developed  to  provide  additional
functionality directly. 

 Retain a simple instruction set, greatly enhance processor performance
and develop complex functionality through the use of software tools to
generate the required additional volume of instruction codes. 

Processors were developed to handle the most commonly used instructions
as quickly as possible and complex functionality was left to the development
tools i.e. high-level language software and compilers. Processors of this type
are  known  as  “Reduced  Instruction  Set  Computers”  or  RISC  machines.
Machines  with  enhanced  hardware  features  have  become  known  as
“Complex Instruction Set Computers” or CISC machines.

A faster processor may be limited in its performance by the time taken to
interact with its memory. This can easily be seen today where processor core
clocking has exceeded 1GHz. The clock cycle time at this rate is one nano-
second  (10-9 seconds). Light travels only 30cm in this time, so the electrical
operation of remote memory at this rate is exceedingly difficult to impossible.

Therefore,  processors  today make  use  of  many more  registers  within  the
processor microchip (where distance is short) and interaction with memory is
minimised  by  architecture  and  “sub-contracting”  to  a  memory  manager.
Processing occurs between registers.  The memory manager stores results
(as  required)  and  fetches  instructions  and  data  in  anticipation  of  the
processor’s needs (“pipelining”). This also means there is some overlap of the
fetch and execute cycles unlike the clear separation previously described.

Modern commercial  processors are very high speed and very inexpensive.
Advances  in  software  engineering  have  evolved  parallel-processing
techniques so that some program code threads can be run simultaneously in
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multiple-CPU  machines.  The  human  interface  is  so  abstract  that  no
knowledge  of  what  the  processor  is  actually  doing  is  required  (or  indeed
possible).  The  development  of  high-level  programming  environments  has
allowed the specialisation and simplification of software application creation.

Nevertheless, ultimately the processor machine is manipulating data through
Gates and registers in the manner seen in these Books.
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Appendix: Boolean Algebra

Boolean algebra is a technique for writing and calculating logical functions.
The input and output quantities are given letter names (like ordinary algebra)
such as x, y, z etc. The letters represent the general state of the quantities but
each can have only two possible values: zero or one.  

Therefore, it can be stated that, for a quantity x subjected to a logical OR with
its own invert:

x  + x  = 1

Similarly for x subjected to a logical AND with its invert

x . x  = 0

Tables can be constructed showing outputs for particular inputs. For example,
take two inputs x and y which generate the output z according to Table 33:

x y z x y z

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 1 0 0 0

Table 33 Truth table for output z with inputs x and y

The left  side of the table shows the output z for two inputs x and y.  The
function is clearly z equals x OR y which is expressed as

z = x + y

The right side shows all the values in the left but each is inverted. The output
zbar is clearly xbar AND ybar expressed as

z  = x . y

The AND to the right is the invert of the OR to the left. The AND expression
above  (with  zbar)  is  the  invert  of  the  OR  above  (with  z).  Therefore,  the
following expression can be written

x . y  = x  + y (rule 1)

Similarly,  by starting with  an AND table on the left  of  Table 33,  it  can be
shown that

x . y  = x  + y (rule 2)
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The two rules are called D’Morgan’s rules and are used extensively when
designing logic circuits.

For  example,  a  design  for  a  full-adder  using  only  NAND gates  needs  to
include the Exclusive OR function, for which the output required is shown in
Table 34.

Type Output Notation Symbol
A B OUT

Exclusive OR 0 0 0 A  B
0 1 1
1 0 1
1 1 0

Inputs

Table 34 Exclusive OR function

A NAND function is an inverted AND of the form

z  = x . y

The Boolean expression for Exclusive OR is

z  = x . y  + x . y

Using D’Morgan this can be rearranged as

z  = x . y . x . y

This shows two levels of NAND function. The two expressions involving x and
y are NANDs and their result leads to a further NAND. The circuit may be
drawn as shown in Figure 35. Partial results are shown.

Figure 35 Exclusive OR

However,  to  use  only  NAND gates  the  x  and  y  expressions  need  to  be
formulated  using  the  non-inverted  forms.  That  is,  the  NAND needs  to  be
between x and y and the NOT gates removed.
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The forms to be replaced are

x . y and x . y

To do this, note the following trick using D’Morgan’s rules and simple algebra

x . y . y  =

( x  + y ) . y  =

x . y  + y . y

But ybar  AND y is zero (as seen above)  and the second part  of  the final
expression is zero. Therefore the mixed forms in the Exclusive OR function
can be replaced as follows

z  = x . y . y . x . x . y

This function shows three levels of NAND combining the inputs x and y. The
circuit can immediately be drawn as shown in Figure 36. The partial results for
each NAND gate are shown.

Figure 36 Exclusive OR in NAND gates

A half-adder can be achieved by inverting the partial result as shown in the
circuit Figure 37.

Figure 37 Half Adder in NAND gates
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Although the half-adder includes a NOT gate the full-adder requires the OR of
the two half-adders used in its design (section 2.2.1). Two inverted forms into
a NAND achieve a logical OR. Therefore, a full-adder in NAND gates can be
drawn as shown in Figure 38.

Figure 38 Full Adder in NAND gates

There are many other techniques to achieve logic gate designs.
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