
DIGITAL MAGIC EXPOSED

Book 3 – The Simple Digital Processor Simulator

1

Forward

Book 1 introduces the fundamentals of digital processing by describing a
simple processor. Book 2 describes an emulator providing a graphical
demonstration of the processor calculating each Machine Cycle. This book
describes a simulation of the processor based upon an electronic design and
implementation. The simulation is provided by a freeware tool.

The tool is available from Logical Circuit on the website www.logiccircuit.org
and is maintained by a group of enthusiasts. The tool is excellent and
achieves good performance for a free-to-use software application. It is only for
educational use. The simulator works with Version 2.21.1.10. An installation
Version 2.21.1.10 is included with the Books in case of difficulties with a later
version. Note that the tool is not currently available to run in Windows S
mode, MAC or Linux.

The tool provides a facility for exporting drawn logic circuits so that pictures
can be created for documents. All the circuits presented in these books have
been produced on the tool for which Logical Circuits is acknowledged.

Since the simulator is an electronic design of the processor it is necessary to
load the Machine Code resulting from the assembled instructions into the
simulator memory. This can be done manually but is best achieved using the
firmware creation facility available from the emulator as described in Book 2.

This Book consists of two parts:
 Part 1 – This part describes installation of the simulator and its

operation.
 Part 2 – This part provides detail on the simulator electronics,

including the circuits and how they work.

2

Part 1 – The Computer Processor Simulator

Forward..2
1 Introduction...4
2 Logical Circuit...5

2.1 Installation...5
2.2 Overview...5

3 Operating the Simulator...9
3.1 Introduction..9
3.2 Operating Modes...9
3.3 Timing Indicators...10
3.4 Basic Operation...11
3.5 Viewing Results...17
3.6 Closing the Simulator..18

4 More Advanced Computation...19
4.1 Prime Number Generator..19
4.2 Insertion Sort...22
4.3 Shell Sort...23

Appendix: Rolled-up Circuits...26

3

1 Introduction

The processor operates by a sequence of instructions being fetched and
executed as shown in Book 1 Part 1. The procedure is driven by an electronic
clock. Every transition of the clock leads to a furthering of the program
execution.

Commercial processors use each clock transition to kick-off sequences of
electronic signals which operate the registers and gates. Several internal
processor transitions occur on each clock transition. Such processors are
carefully designed such that the timings of the transitions occur accurately
and in sequence. There are intermediate transitory conditions between clock
transitions. This type of circuit is known as a “dynamic” processor and limits
the clock frequency to a minimum as well as maximum value for the system to
work. The technology is built for economy and speed.

The circuit described in this Book is for a “static” processor. That is, each
clock transition performs a defined event which alters the processor state into
a stable state which it can hold indefinitely. The approach leads to a more
complex and slower design of the processor but allows the clock to operate at
low frequencies down to zero, which means the clock can be paused. This
allows the operations occurring throughout the processor for every transition
to be observed in detail at leisure.

4

2 Logical Circuit

2.1 Installation

The Logic Circuit web-site provides a download file for installation. This is in
the form of a zip file, which when unzipped contains a Microsoft installation file
(LogicCircuitSetup.msi). Running the file begins the installation wizard which
provides a guide through the installation process. The application does not
contain a recognised certificate and the installation is accompanied by
warnings regarding unknown publishers and trusted sources. Of course, users
should not install untrustworthy or uninvited applications.

The simulator has been tested and works with Version 2.21.1.10. An
installation Version 2.21.1.10 is included with the Books should there are
problems with the current tool.

The tool is ready to use when installed. Run the file “DME Simulator Iss
x.x.CircuitProject” to start the simulator.

2.2 Overview

On starting the simulator the main screen appears (Figure 1).

Figure 1 Simulator Main screen

The main screen shows two window panes. The main circuit and display is
contained on the right. This consists of the following.

 Four switches
o TOG – A toggle button switching the clock line to the opposite of

its current state (i.e. “on” if “off” and vice versa).

5

o CLK – A toggle button which switches the clock into free running
mode.

o MC – a push-button which runs the processor for one Machine
Cycle when pressed with the indicator LED alight and CLR reset
is released.

o CLR – A toggle button that holds the processor in reset until
pressed. Pressing again re-asserts reset.

 Seven two-digit displays
o The content of the six main registers of the simple processor.
o The data copied over the data bus.

 Eight LEDs
o Clock – An indication of when the Clock pulse is “high” or “low”.
o Execute – when lit indicates processor is in the Execute

Machine Cycle state, otherwise in Reset or Fetch state. The
indicator changes at the end of a cycle to show the next cycle.

o Carry – the status of the Carry flag (LED alight means Carry is
“1”).

o Write Memory – when alight indicates a write to memory. When
off the memory is in the read state.

o MC – when alight the MC button is active.
o Three timing indicators indicating the status of the key timing

pulses used in the operation of the processor.

At the centre of the pane the circuit “SIM” contains the main processing
circuits of the simple processor. This circuit is described in Part 2.

The circuit sits on a grid consisting of dots used for reference when the circuit
is “powered-up”.

The simulator processor is “powered off” after starting. The processor circuit
“power” is controlled by the button to the bottom right of the screen next to the
circuit view zoom control. Clicking the power button toggles the power to the
simulator “electronics”. This is best used with the Main circuit view (Figure 1).

The displays show the hexadecimal value of the named register or data. The
appearance of each of the hex characters 0 to F is as shown in Figure 2.

Figure 2 Hexadecimal digit display formats

The screen is not locked against user modification. Therefore, accidental
modification is possible when using the simulator, which could render it
broken. Back-up procedures need to be applied when modifying, renaming
and filing versions of the simulator.

6

The left pane contains all the circuits and primitives used within the electronic
design. Most of these are “rolled-up” in the drop-down arrows seen below the
two circuits marked “Main” and “RAM chip”. The rolled-up circuits are
discussed further in the Appendix.

At any time, double-clicking “Main” navigates the simulator to the view seen in
Figure 1. Double clicking “RAM chip” brings the circuit containing the RAM
component provided in the tool into view. This has been kept very simple and
is shown in Figure 3.

Figure 3 RAM chip screen

The purpose of the circuit and its accessibility under “Main” is to provide the
easiest access to the RAM. Double-clicking the RAM within the RAM chip
pane starts the RAM content view, shown in Figure 4. (There is no direct
access to RAM content in the tool command bar).

Figure 4 RAM content view

7

The window size may be adjusted to view all 256 bytes of RAM memory. The
content can be edited directly by clicking on cells or navigating with the cursor
buttons and typing new values. All entries are shown in hex and must be
entered as hex.

The window also contains two buttons on the bottom left: “Load…” and “Save
As…”. The buttons are used to load and save a binary image of the RAM
content. The binary file produced by the Assembler in the emulator (Book 2) is
compatible to the file type required by the simulator. To load the binary file
click the “Load” button, select the file (e.g. “Firmware.bin”) in the relevant
directory and click “Open”.

The “Save As…” button can be used to save a binary file should the RAM
data be updated and a copy required. An appropriate filename and file-path
need to be provided.

The four drop-down items at the top of the window set key RAM conditions
and must not be modified or the simulator will not function.

The program contained in the RAM in Figure 4 is the “Simple Branch”
example in Book 1 Part 1.

8

3 Operating the Simulator

3.1 Introduction

This section describes the operating options for the simulator along with a
note on the function of the timing indicators. Following this the simulator
operation is demonstrated by means of a simple program example. The
program is the “Basic Operation” seen in Book1 Part 1.

3.2 Operating Modes

The simulator may be operated in any of three modes. The modes may be
interchanged during program execution. The three operating modes are:
Clock toggle (TOG), Free-running clock (CLK) and Machine Cycle (MC).

On circuit power-up, the CLR key holds the processor in reset until clicked.
When clicked again, CLR stops the processor running and resets the Program
Counter to zero. (It also resets the electronics).

As described in the Introduction (section 1) the processor is designed as a
static device. This means that every state within the electronics is stable and
the clock can pause indefinitely at any time. This is not how commercial
processors work, which are very economical with clocking and state changing
but cannot hold any individual state indefinitely. The static processor requires
more clocking since a change in state for any part of the circuit must occur on
a clock transition. Consequently the simple processor requires four clock
cycles to complete a single Machine Cycle. (The emulator in Book 2 operates
with only one clock cycle per Machine Cycle).

The TOG key provides the clock transition manually. Therefore, to complete a
Machine Cycle requires eight clicks. Timing pulse changes on the LEDs are
best observed in this mode. The actual clock transition is synchronised to the
tool clock. If the tool clock frequency is set very low then there can be a
noticeable delay between TOG clicks and the clock pulse change.

The MC key runs four clock cycles for a single click of the key. However, it is
important that the pulses are applied over a complete Machine Cycle. If the
processor is not at the start of a Machine Cycle then the MC key does not
operate. The start of the Machine Cycle is indicated by the MC LED being lit.
At any time the start of the Machine Cycle can be instated by clicking TOG
repeatedly until the LED is lit. The pulses applied by MC are generated by the
tool clock.

The CLK key applies the tool clock as a free-running clock to the circuit when
CLR is released. This can be halted at any time by clicking CLK again.

9

3.3 Timing Indicators

Processor timing and control is achieved using three timing signals described
as follows.

1 2 3 4 5 6 7 8
clock

DCDG Enable Gates

CE Enable Data

INT Transfer Data

Figure 5 Timing pulses

The diagram Figure 5 shows the events occurring within the processor during
the timing pulses (DCDG, CE, INT) for a single Machine Cycle. The timing
pulses are generated from the clock at the transitions shown for each group of
four clock pulses. The timing pulses are “active low”. This means that the
state is enabled for each timing pulse type when the corresponding LED is off.

The timing ensures that the selected Gates are on and stable before memory
and data are selected by the control electronics. The key operations for each
clock transition are as follows.

1. Start of machine cycle. No operation.
2. DCDG active and required Gates selected.
3. CE active. Memory address set in Address Bus Register and memory

enabled.
4. Selected Gates enabled and data transfer begins.
5. No operation.
6. Data fixed into destination registers and memory as required.
7. Memory deselected. Program Counter, Flags Carry and Zero are

updated, as required.
8. DCDG inactive and Gates deselected indicating end of cycle.

A program can be stepped through using the TOG button and the register
changes observed in relation to the timing indicated in Figure 5. Further detail
on the operation of the circuits is provided in Part 2.

10

3.4 Basic Operation

3.4.1 Starting the Simulator
With the RAM content view open (as per Figure 4), enter the Basic Operation
codes into RAM from address 00 (as Book 1 Part 1) and click “OK”. The code
reads as shown in Table 1 and appears in RAM as shown in Figure 6.

Instruction Code Memory Address Machine Code
LDI #F0
LDA #F0
HLT

00 01
02 03
04

10 F0
11 F0
00

Table 1 Basic Operation program code

Figure 6 Basic operation program code in RAM

Return to the main screen (double-click “Main”) and apply power (i.e. click the
power button at the bottom right of the screen). The display will look
something like Figure 7.

11

Figure 7 Main screen on power-up

The number values contained in all the registers except Accumulator and
Program Counter may vary since they are not preset in the power-up and may
be random. The Accumulator and Program Counter registers are reset to zero
by CLR (which is holding the circuit in reset).

The Carry LED may be on or off. The other LEDs are as shown in Figure 7.
The CLR key is not lit indicating the reset state and the Execute LED is off.

The left pane has altered after power-up. The circuits shown in the right pane
are individually displayed. This allows each circuit to be investigated by
double-clicking the individual representation in the left pane throughout the
power-up phase. The circuits are identified by position using the co-ordinates
next to the circuit. For example (19,2) is found on the grid 19 dots horizontally
from the left and 2 dots down from the top i.e. Accumulator display.

The clock frequency setting is at the bottom of the left pane. The slider can be
used to increase the frequency of the clock when free-running (CLK), the
pulse rate during MC and the responsiveness of TOG. The check box will run
the simulator at maximum speed. As the warning states, this will seriously
load the pc cpu and may impact any other applications running (e.g. slow
them down). The check box should be unchecked immediately after program
completion when it is used.

12

3.4.2 Running the Program
Click CLR. The CLR button lights (Figure 8).

Figure 8 CLR key clicked and lights to indicate Reset is removed

The forced reset is removed and the circuit is ready to run whenever a clock is
applied. The Execute LED is off and now indicates the processor is in the
Fetch state. The following screens apply where the MC key is clicked each
time its LED is lit. The clock frequency is set to the minimum and the Machine
Cycle can be observed as the timing pulses proceed.

Click MC. The MC LED turns off.

The timing LEDs sequence through the states shown in Figure 5 and the
register displays are updated. The sequence is completed when the MC LED
is lit.

The first clock pulse after a CLR reset may settle the timing circuits of the
simulator and be observed as the MC LED extinguishing on the first transition
and re-lighting on the second. The MC key will run the first cycle correctly.

13

MC1 – Fetch LDI

Figure 9 Fetch LDI instruction

In Figure 9:

 The fetch cycle has been processed and the LDI instruction loaded into
the Instruction Register.

 The Execute LED is lit indicating the processor is now in the Execute
state.

 The Address Bus Register indicates the memory byte selected (00)
and the Program Counter is incremented.

Click MC.

14

MC2 – Execute LDI

Figure 10 Execute LDI instruction
The execute cycle is complete (LED off). The Accumulator is loaded with F0
from address 01 and the Program Counter incremented.

Click MC.

MC3 – Fetch LDA

Figure 11 Fetch LDA instruction

The LDA instruction is fetched and placed into the Instruction Register. The
Program Counter is incremented.

Click MC.

15

MC4 – Execute 1 LDA

Figure 12 The first execute cycle for the LDA instruction

The operand is loaded into the Address Register and the Program Counter
incremented.

Click MC.

MC5 – Execute 2 LDA

Figure 13 The second execute cycle for the LDA instruction

The data at memory address F0 is loaded into the Accumulator.

Click MC.

16

MC6 – HLT Halt instruction

Figure 14 Halt instruction

The Instruction Register is loaded with HLT and the program stops.

Click CLR twice and click CLK. The program runs from start to HLT. Note that
HLT is continually processed with no increment of the Program Counter.

CLK can be turned off at any time and the program continued with TOG or
MC (when indicated by the LED).

By repeating the steps above using only the TOG key the changing states of
the registers and data lines can be closely observed. See Part 2 for the
operation of the circuits.

The processing speed may be increased by moving the Frequency slider for
both MC and CLK modes.

3.5 Viewing Results

Programs persist in memory between runs of the simulator. However, to
observe any data in memory generated by a run program it is necessary to
view the RAM whilst the simulator processor is powered-on. If the circuit is
powered-off before the RAM is viewed then the data is lost.

There is no short-cut to the RAM when powered-on. Each circuit must be
entered until the RAM view is displayed. In the left window pane (Figure 7)
double-click “SIM” followed by “CPU”; “RAM cmpnt”; “RAM” (scrolling down as
required). With the RAM chip in view double-click the RAM in the right pane to
open the RAM content view, as per section 2.2. Once observed, this RAM

17

persists and is viewable after power-off in the tool without updating the
simulator program file.

The data generated does not persist when the simulator is closed. If a copy is
required the RAM image may be saved, as per section 2.2, or a new version
of the simulator program file saved as described in section 3.6.

3.6 Closing the Simulator

Most of the time when closing the simulator the tool requests whether a save
is required. As with the emulator (Book 2) usually the answer will be “No”.

If a saved version is required (because of modification or a particular program
or data contained in the RAM) then a relevant filename should be used to
create another version.

18

4 More Advanced Computation

This final section contains some examples of computations the simple
processor can execute, given the very limited memory space. In fact it is
mainly the limitation to memory which prevents the execution of far more
complex programmes. The emulator includes the programs which can be
used to generate binary files for the simulator.

4.1 Prime Number Generator
The program “primes” generates all prime numbers between 15 and 255 and
requires many thousands of machine cycles (about 100,000) to complete.

With the simulator clock set to maximum frequency (by clicking the check box)
the program takes a few seconds to complete on a Windows 10 lap-top. The
program completes when the Instruction Register contains “00”. Uncheck the
box applying maximum speed when this occurs. The result is shown in Figure
15 with the generated numbers beginning at location 44. Data needs to be
viewed during simulator power-up as per section 3.5.

Figure 15 RAM after primes program run

Searching through the code in Figure 15 is aided through the “Address and
Code” view offered by the Assembler in the emulator, partly shown in Figure
16.

19

Figure 16 Partial view of Assembled primes Instruction Code in emulator

The program looks for all prime numbers between 15 and 255 (the maximum
number represented by a single byte). When testing if a number is prime it is
only necessary to test prime root values up to the square root of the tested
number.

The algorithm tests all odd numbers from 15 to 255 by continuously
subtracting the prime values between 1 and 15. That is 3, 5, 7, 11 and 13.

A flow diagram of the program and the Instructions is shown in Figure 17.

The program stores the prime numbers it finds starting at the address list (44)
and each memory byte following as required.

20

Figure 17 Algorithm and program for finding primes

21

n EQ 15
x EQ 13

LDI list
STA listadd
LDI n
STA numst

main LDI x
STA rootst

next LDA numst
SEC

again SBC rootst
BEZ notpr
BCS again
LDA rootst
XOI #0B
SEC
BNZ not11
LDA rootst
SBI #02
STA rootst

not11 LDA rootst
SBI #02
STA rootst
SBI #01
BNZ next
LDA numst
STX listadd
LDA listadd
CLC
ADI #01
STA listadd

notpr LDA numst
CLC
ADI #02
STA numst
BCN main
HLT

numst &
rootst &
listadd &
list &

Y

Y

N

N

Y

Subtract 2 from the root and store

zero
(not prime)-ve

+ve

Load start address of list (list)
Store in the List Address (listadd)

Load 15, the first Test Number
Store in test number store (numst)

Load 13, the highest root to try
Store in the root store (rootst)

Load the Test Number (numst)

Subtract the root (rootst)

Result

rootst =
11?

Subtract 2 from the root and store

rootst =
1?

Test Number is prime. Store in list.
Increment list in listadd

Add 2 to Test Number.
Store in numst

Test No. >
255?

Halt

N

main

next

again

not11

notpr

4.2 Insertion Sort
The program “Insertion Sort” applies an insertion sort to a list of one-byte
characters contained in memory under the label “list”. A list of bytes is defined
as a sequence of non-null bytes terminated by a null byte i.e. byte-value is 00
(hex). The list is sorted in ascending order and overwrites the starting list.

The insertion sort functions by setting-up two pointers at the beginning of the
list (one behind the other) and moving through the list swaps bytes where a
lower-value byte is further along the list. When there is a swap the lower of
the two bytes is compared to the next byte down the list and a further swap
may occur. This repeats until no swap occurs or the start of the list is reached
whereupon the pointers progress from the point previously reached in the list.
The process completes when all bytes are checked.

Before the sorting algorithm begins the length of the list is calculated using a
simple counting loop, shown in Figure 21.

Figure 18 Calculating the length of the list

The emulator insertion sort example includes a data list for sorting. The list is
generated using a random spreadsheet function. The function operates every
time an event results in a spreadsheet update. Therefore, the data list
constantly changes. The user can modify the cells as required for other
examples of lists.

Occasionally, the list generator may calculate a null entry, which would
terminate the list sooner than expected. The list is easily regenerated to
remove the null or the spreadsheet formula modified to overcome this result
when trying the sort program.

The sort algorithm is shown in Figure 19.

22

LDI list
STA point1
LDI #00
STA length

loop1 LDX point1
BEZ fincount
LDA length
CLC
ADI #01
STA length
LDA point1
CLC
ADI #01
STA point1
BRA loop1

fincount

Start

Set Point1 to start List
Set Length to zero

Content
Point1 =

0?

Add one to Length
Add one to Point1

N

Y

Fincount

Loop1

Figure 19 Insertion sort algorithm and program

4.3 Shell Sort
Named after its inventor in 1959 the Shellsort greatly increases the
performance of a sort on very large lists. Assuming a random distribution of
numbers in the list there could be large numbers to the front of the list and
small numbers towards the end. The insertion sort moves numbers one space
at a time as it progresses through the list. Clearly, a large number towards the
front could take a long time to reach its position.

Very simply, the Shellsort performs some pre-processing on the list which
tends to place larger numbers towards the end and smaller numbers towards
the beginning quickly making the final insertion sort much more efficient with
its moves. The algorithm is shown in Figure 20.

23

Find length of List (Length)

Set Progress to one

Progress >=
Length?

Halt

Y

Set Point1 to start List plus Progress
Set Point2 to one before Point1
Copy content Point1 to Temp

Content Point2
> Content Temp?

Copy content Point2 to Point1
Decrement Point1
Decrement Point2

Y (Swap)

Point2 >=
start List?

Y

Copy Temp to Point1
Increment Progress

N

N (No swap)

N

Loop2

Loop3

Finlp3

fincount LDI #01
STA progress

loop2 LDA progress
SEC
SBC length
BCS halt
LDI list
CLC
ADC progress
STA point1
SEC
SBI #01
STA point2
LDX point1
STA temp

loop3 LDX point2
SEC
SBC temp
BCN finlp3
LDX point2
STX point1
LDA point1
SEC
SBI #01
STA point1
LDA point2
SBI #01
STA point2
SBI list
BCS loop3

finlp3 LDA temp
STX point1
LDA progress
CLC
ADI #01
STA progress
BRA loop2

halt HLT
point1 &
point2 &
length &
temp &
progress &

list &

Figure 20 Shell sort algorithm and program

The list is created and counted in the same manner as the insertion sort
example.

24

fincount LDA length
STA gap

loop4 LDA gap
SHR
STA gap
BEZ halt
STA progress

loop2 LDA progress
SEC
SBC length
BCS loop4
LDI list
CLC
ADC progress
STA point1
SEC
SBC gap
STA point2
LDX point1
STA temp

loop3 LDX point2
SEC
SBC temp
BCN finlp3
LDX point2
STX point1
LDA point1
SEC
SBC gap
STA point1
LDA point2
SBC gap
STA point2
SBI list
BCS loop3

finlp3 LDA temp
STX point1
LDA progress
CLC
ADI #01
STA progress
BRA loop2

halt HLT
point1 &
point2 &
length &
gap &
temp &
progress &

list &

Find length of List (Length)

Set Gap to Length

Progress >=
Length?

Halt

Y

Set Point1 to start List plus Progress
Set Point2 to Point1 minus Gap
Copy content Point1 to Temp

Content Point2
> Content Temp?

Copy content Point2 to Point1
Reduce Point1 by Gap
Reduce Point2 by Gap

Y (Swap)

Point2 >=
start List?

Y

Copy Temp to Point1
Increment Progress

N

N (No swap)

N

Set Gap to integer of half previous Gap

Gap > 0?

Set Progress to Gap

N

Y

Loop4

Loop2

Loop3

Finlp3

The pointers comparing bytes in the list are separated by a gap. The size of
the gap is the subject of many academic arguments. The gap used here is the
gap used originally by the inventor. The size of the list is divided by two and
the nearest lower integer used as the gap size. A compare of bytes is made
and a swap occurs if the lower byte is further along the list. The pointers move
in a similar fashion to the insertion sort section 4.2.

Following a first pass over the entire list the gap is divided by two again and
the whole process repeated until the gap is one. At this point, in effect, an
insertion sort is performed. The gap will subsequently be halved to zero and
the process completes.

The initial swaps move data very quickly to the front or back of the list making
the insertion sort more efficient.

25

Appendix: Rolled-up Circuits

Figure 21 Simulator Main screen

The rolled-up circuits appear in the left pane of the Main screen Figure 21
below the RAM chip. Clicking the down chevron on each of the circuits
reveals the outline of the circuits classified by the group name. The groups
are categorised as follows.

 4000, 74100-74999, 74xx – these are families of commercially
available integrated circuits. Most of these circuits are available on the
LogicCircuit web-site.

 Component – this category contains all the circuits which are effectively
sub-assemblies of the Simple Processor.

 Flip-flop – the commercial latches, counters etc contain basic flip-flop
assemblies defined by this category.

 Text Note, Input-Output, Primitives – the basic text, buttons,
connectors and logic supplied with the LogicCircuit tool.

Any of the circuits may be selected in the left pane or by double-clicking a
view of the component in the right pane. All the circuits may be decomposed
down ultimately into the primitive forms as defined in the final bullet above.

The flip-flop circuits are devices used within the commercial circuits identified
in the first bullet. The variety between the essential types (i.e. the D and JK
flip-flops) is simply a reflection of the implementation the manufacturers of the
integrated circuits chose at the time.

Ultimately, the flip-flops are the devices in the processor systems that retain
the “bits” of data described in Book 1. A brief description of each is included
here. The Logic Circuit tool includes a feature in the Circuit menu “Used By…”
which identifies where the circuit is used.

26

D FF level set – the flip-flop switches the output Q to the level provided on D
whenever T is high. The level on Q becomes fixed when T goes low.

D flip-flop – this flip-flop includes a reset (RS). With RS low (inactive) the Q
output is set by a transition low-to-high on clk which sets Q to the level on D.
A high on RS sets Q low when clk is low. A high on RS sets Qbar high.

D flip-flop with set and clear – with set and clr high (inactive) Q is set to D by a
transition low-to-high on clk. Q is forced high and Qbar low when set is active
(low) and Q is forced low and Qbar high when clr is active (low). (Both outputs
forced high if both set and clr active).

JK active low flip-flop m/s with active high set and clear – with J and K inactive
(high) clk has no effect. A high on set forces Q high and Qbar low. A high on
reset forces Q low and Qbar high. (A high on both forces both outputs high).
With set and reset inactive (low), an active J or K (low) is clocked by a low-to-
high transition on clk. The output changes when clk changes high-to-low. For
J active Q is set high and Qbar low. For K active Q is set low and Qbar high.
When J and K are both active the outputs toggle between high and low on
every high-to-low transition of clk.

JK flip-flop master/slave with clear – with clr active (low) Q is forced low and
Qbar high regardless of other inputs. With clr inactive (high), an active J or K
(high) is clocked by a low-to-high transition on clk. The output changes when
clk changes high-to-low. For J active Q is set high and Qbar low. For K active
Q is set low and Qbar high. When J and K are both active the outputs toggle
between high and low on every high-to-low transition of clk.

27

	1 Introduction
	2 Logical Circuit
	2.1 Installation
	2.2 Overview

	3 Operating the Simulator
	3.1 Introduction
	3.2 Operating Modes
	3.3 Timing Indicators
	3.4 Basic Operation
	3.4.1 Starting the Simulator
	3.4.2 Running the Program

	3.5 Viewing Results
	3.6 Closing the Simulator

	4 More Advanced Computation
	4.1 Prime Number Generator
	4.2 Insertion Sort
	4.3 Shell Sort

